Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nat Commun ; 15(1): 4148, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755149

RESUMO

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.


Assuntos
Células Epiteliais Alveolares , Plasticidade Celular , Fator Nuclear 1 de Tireoide , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/citologia , Fator Nuclear 1 de Tireoide/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular , Epigênese Genética , Camundongos Endogâmicos C57BL , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/genética , Regeneração , Vírus Sendai/genética , Vírus Sendai/fisiologia , Proliferação de Células , Camundongos Knockout , Pulmão/metabolismo
2.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508315

RESUMO

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Assuntos
Fator Regulador 7 de Interferon , NF-kappa B , Animais , Humanos , Camundongos , Células HEK293 , Inflamação/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Vírus Sendai/fisiologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Replicação Viral , Mutação , Regulação da Expressão Gênica/genética , Vírus da Hepatite Murina/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Respirovirus/imunologia
3.
Immunology ; 167(1): 105-121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751391

RESUMO

Cells must control genes that are induced by virus infection to mitigate deleterious consequences of inflammation. We investigated the mechanisms whereby Keap1 moderates the transcription of genes that are induced by Sendai virus infection in mouse embryo fibroblasts (MEFs). Keap1-/- deletions increased the transcription of virus induced genes independently of Nrf2. Keap1 moderated early virus induced gene transcription. Virus infection induced Keap1 to bind Ifnb1, Tnf and Il6, and reduced Keap1 binding at Cdkn1a and Ccng1. Virus infection induced G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition. Keap1-/- deletions eliminated G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition, but they did not affect NFκB p65, IRF3 or cJun recruitment. G9a-GLP inhibitors (BIX01294, MS012, BRD4770) enhanced virus induced gene transcription in MEFs with intact Keap1, but not in MEFs with Keap1-/- deletions. G9a-GLP inhibitors augmented Keap1 binding to virus induced genes in infected MEFs, and to cell cycle genes in uninfected MEFs. G9a-GLP inhibitors augmented NFκB subunit recruitment in MEFs with intact Keap1. G9a-GLP inhibitors stabilized Keap1 retention in permeabilized MEFs. G9a-GLP lysine methyltransferase activity was required for Keap1 to moderate transcription, and it moderated Keap1 binding to chromatin. The interdependent effects of Keap1 and G9a-GLP on the recruitment of each other and on the moderation of virus induced gene transcription constitute a feedback circuit. Keap1 and the electrophile tBHQ reduced virus induced gene transcription through different mechanisms, and they regulated the recruitment of different NFκB subunits. Characterization of the mechanisms whereby Keap1, G9a-GLP and NFκB p50 moderate virus induced gene transcription can facilitate the development of immunomodulatory agents.


Assuntos
Histona-Lisina N-Metiltransferase , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2 , Infecções por Respirovirus/metabolismo , Animais , Cromatina , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Vírus Sendai/fisiologia
4.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35173037

RESUMO

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Assuntos
Fatores Etários , Envelhecimento/fisiologia , Asma/imunologia , COVID-19/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , SARS-CoV-2/fisiologia , Vírus Sendai/fisiologia , Células Th2/imunologia , Animais , Asma/epidemiologia , COVID-19/epidemiologia , Citocinas/metabolismo , Humanos , Influenza Humana/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Estados Unidos/epidemiologia
5.
Front Immunol ; 12: 704391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858393

RESUMO

Cystic fibrosis (CF) is an autosomal recessive gene disorder that affects tens of thousands of patients worldwide. Individuals with CF often succumb to progressive lung disease and respiratory failure following recurrent infections with bacteria. Viral infections can also damage the lungs and heighten the CF patient's susceptibility to bacterial infections and long-term sequelae. Vitamin A is a key nutrient important for immune health and epithelial cell integrity, but there is currently no consensus as to whether vitamin A should be monitored in CF patients. Here we evaluate previous literature and present results from a CF mouse model, showing that oral vitamin A supplements significantly reduce lung lesions that would otherwise persist for 5-6 weeks post-virus exposure. Based on these results, we encourage continued research and suggest that programs for the routine monitoring and regulation of vitamin A levels may help reduce virus-induced lung pathology in CF patients.


Assuntos
Fibrose Cística/metabolismo , Pulmão/patologia , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Vitamina A/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Transgênicos , Regiões Promotoras Genéticas , Vitamina A/administração & dosagem
6.
Cytokine ; 148: 155697, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509038

RESUMO

The prevalence of SARS-CoV-2 is a great threat to global public health. However, the relationship between the viral pathogen SARS-CoV-2 and host innate immunity has not yet been well studied. The genome of SARS-CoV-2 encodes a viral protease called 3C-like protease. This protease is responsible for cleaving viral polyproteins during replication. In this investigation, 293T cells were transfected with SARS-CoV-2 3CL and then infected with Sendai virus (SeV) to induce the RIG-I like receptor (RLR)-based immune pathway. q-PCR, luciferase reporter assays, and western blotting were used for experimental analyses. We found that SARS-CoV-2 3CL significantly downregulated IFN-ß mRNA levels. Upon SeV infection, SARS-CoV-2 3CL inhibited the nuclear translocation of IRF3 and p65 and promoted the degradation of IRF3. This effect of SARS-CoV-2 3CL on type I IFN in the RLR immune pathway opens up novel ideas for future research on SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Proteólise , Proteína DEAD-box 58/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interferon beta/genética , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo , Elementos de Resposta/genética , Vírus Sendai/fisiologia , Transdução de Sinais
7.
J Virol ; 95(19): e0081521, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287046

RESUMO

Sendai virus (SeV), belonging to the Respirovirus genus of the family Paramyxoviridae, harbors an accessory protein, named C protein, which facilitates viral pathogenicity in mice. In addition, the C protein is known to stimulate the budding of virus-like particles by binding to the host ALG-2 interacting protein X (Alix), a component of the endosomal sorting complexes required for transport (ESCRT) machinery. However, small interfering RNA (siRNA)-mediated gene knockdown studies suggested that neither Alix nor C protein is related to SeV budding. In the present study, we determined the crystal structure of a complex comprising the C-terminal half of the C protein (Y3) and the Bro1 domain of Alix at a resolution of 2.2 Å to investigate the role of the complex in SeV budding. The structure revealed that a novel consensus sequence, LXXW, which is conserved among Respirovirus C proteins, is important for Alix binding. SeV possessing a mutated C protein with reduced Alix-binding affinity showed impaired virus production, which correlated with the binding affinity. Infectivity analysis showed a 160-fold reduction at 12 h postinfection compared with nonmutated virus, while C protein competes with CHMP4, one subunit of the ESCRT-III complex, for binding to Alix. All together, these results highlight the critical role of C protein in SeV budding. IMPORTANCE Human parainfluenza virus type I (hPIV1) is a respiratory pathogen affecting young children, immunocompromised patients, and the elderly, with no available vaccines or antiviral drugs. Sendai virus (SeV), a murine counterpart of hPIV1, has been studied extensively to determine the molecular and biological properties of hPIV1. These viruses possess a multifunctional accessory protein, C protein, which is essential for stimulating viral reproduction, but its role in budding remains controversial. In the present study, the crystal structure of the C-terminal half of the SeV C protein associated with the Bro1 domain of Alix, a component of cell membrane modulating machinery ESCRT, was elucidated. Based on the structure, we designed mutant C proteins with different binding affinities to Alix and showed that the interaction between C and Alix is vital for viral budding. These findings provide new insights into the development of new antiviral drugs against hPIV1.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus Sendai/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Liberação de Vírus , Sequência de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular , Cristalografia por Raios X , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Vírus Sendai/química , Vírus Sendai/genética , Vírus Sendai/metabolismo , Transdução de Sinais , Vírion/fisiologia
8.
FEBS Open Bio ; 11(5): 1452-1464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822489

RESUMO

Human pathogenic RNA viruses are threats to public health because they are prone to escaping the human immune system through mutations of genomic RNA, thereby causing local outbreaks and global pandemics of emerging or re-emerging viral diseases. While specific therapeutics and vaccines are being developed, a broad-spectrum therapeutic agent for RNA viruses would be beneficial for targeting newly emerging and mutated RNA viruses. In this study, we conducted a screen of repurposed drugs using Sendai virus (an RNA virus of the family Paramyxoviridae), with human-induced pluripotent stem cells (iPSCs) to explore existing drugs that may present anti-RNA viral activity. Selected hit compounds were evaluated for their efficacy against two important human pathogens: Ebola virus (EBOV) using Huh7 cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using Vero E6 cells. Selective estrogen receptor modulators (SERMs), including raloxifene, exhibited antiviral activities against EBOV and SARS-CoV-2. Pioglitazone, a PPARγ agonist, also exhibited antiviral activities against SARS-CoV-2, and both raloxifene and pioglitazone presented a synergistic antiviral effect. Finally, we demonstrated that SERMs blocked entry steps of SARS-CoV-2 into host cells. These findings suggest that the identified FDA-approved drugs can modulate host cell susceptibility against RNA viruses.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , Vírus de RNA/efeitos dos fármacos , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Reposicionamento de Medicamentos/métodos , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Testes de Sensibilidade Microbiana/métodos , Pioglitazona/farmacologia , Vírus de RNA/fisiologia , Cloridrato de Raloxifeno/farmacologia , SARS-CoV-2/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vírus Sendai/efeitos dos fármacos , Vírus Sendai/fisiologia , Células Vero , Tratamento Farmacológico da COVID-19
11.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568513

RESUMO

Negative-sense RNA viruses (NSVs) rely on prepackaged viral RNA-dependent RNA polymerases (RdRp) to replicate and transcribe their viral genomes. Their replication machinery consists of an RdRp bound to viral RNA which is wound around a nucleoprotein (NP) scaffold, forming a viral ribonucleoprotein complex. NSV NP is known to regulate transcription and replication of genomic RNA; however, its role in maintaining and protecting the viral genetic material is unknown. Here, we exploited host microRNA expression to target NP of influenza A virus and Sendai virus to ascertain how this would impact genomic levels and the host response to infection. We find that in addition to inducing a drastic decrease in genome replication, the antiviral host response in the absence of NP is dramatically enhanced. Additionally, our data show that insufficient levels of NP prevent the replication machinery of these NSVs to process full-length genomes, resulting in aberrant replication products which form pathogen-associated molecular patterns in the process. These dynamics facilitate immune recognition by cellular pattern recognition receptors leading to a strong host antiviral response. Moreover, we observe that the consequences of limiting NP levels are universal among NSVs, including Ebola virus, Lassa virus, and measles virus. Overall, these results provide new insights into viral genome replication of negative-sense RNA viruses and highlight novel avenues for developing effective antiviral strategies, adjuvants, and/or live-attenuated vaccines.IMPORTANCE Negative-sense RNA viruses comprise some of the most important known human pathogens, including influenza A virus, measles virus, and Ebola virus. These viruses possess RNA genomes that are unreadable to the host, as they require specific viral RNA-dependent RNA polymerases in conjunction with other viral proteins, such as nucleoprotein, to be replicated and transcribed. As this process generates a significant amount of pathogen-associated molecular patterns, this phylum of viruses can result in a robust induction of the intrinsic host cellular response. To circumvent these defenses, these viruses form tightly regulated ribonucleoprotein replication complexes in order to protect their genomes from detection and to prevent excessive aberrant replication. Here, we demonstrate the balance that negative-sense RNA viruses must achieve both to replicate efficiently and to avoid induction of the host defenses.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Proteínas do Nucleocapsídeo/fisiologia , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Replicação Viral , Células A549 , Animais , Chlorocebus aethiops , Cães , Células HEK293 , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Células Vero , Tropismo Viral
12.
FASEB J ; 35(2): e20995, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910509

RESUMO

Virus entry into cells is the initial stage of infection and involves multiple steps, and interfering viral entry represents potential antiviral approaches. Ion channels are pore-forming membrane proteins controlling cellular ion homeostasis and regulating many physiological processes, but their roles during viral infection have rarely been explored. Here, the functional Kv1.3 ion channel was found to be expressed in human hepatic cells and tissues. The Kv1.3 was then revealed to restrict HCV entry via inhibiting endosome acidification-mediated viral membrane fusion. The Kv1.3 was also demonstrated to inhibit DENV and ZIKV with an endosome acidification-dependent entry, but have no effect on SeV with a neutral pH penetration. A Kv1.3 antagonist PAP-1 treatment accelerated animal death in ZIKV-infected Ifnar1-/- mice. Moreover, Kv1.3-deletion was found to promote weight loss and reduce survival rate in ZIKV-infected Kv1.3-/- mice. Altogether, the Kv1.3 ion channel behaves as a host factor restricting viral entry. These findings broaden understanding about ion channel biology.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Canal de Potássio Kv1.3/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Internalização do Vírus , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Dengue/virologia , Endossomos/metabolismo , Ficusina/farmacologia , Células HEK293 , Hepatite C/virologia , Humanos , Concentração de Íons de Hidrogênio , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Respirovirus/virologia , Transfecção , Células Vero , Internalização do Vírus/efeitos dos fármacos , Infecção por Zika virus/virologia
13.
mBio ; 11(4)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843550

RESUMO

Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases.IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.


Assuntos
Endossomos/virologia , Ribonucleoproteínas/metabolismo , Vírus Sendai/fisiologia , Montagem de Vírus , Células A549 , Linhagem Celular , Humanos , Ribonucleoproteínas/genética , Vírus Sendai/enzimologia , Vírus Sendai/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
14.
Stem Cell Reports ; 15(3): 761-775, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32795421

RESUMO

One approach to understanding how tissue-specific cancers emerge is to determine the requirements for "reprograming" such neoplastic cells back to their developmentally normal primordial pre-malignant epiblast-like pluripotent state and then scrutinizing their spontaneous reconversion to a neoplasm, perhaps rendering salient the earliest pivotal oncogenic pathway(s) (before other aberrations accumulate in the adult tumor). For the prototypical malignancy anaplastic thyroid carcinoma (ATC), we found that tonic RAS reduction was obligatory for reprogramming cancer cells to a normal epiblast-emulating cells, confirmed by changes in their transcriptomic and epigenetic profiles, loss of neoplastic behavior, and ability to derive normal somatic cells from their "epiblast organoids." Without such suppression, ATCs re-emerged from the clones. Hence, for ATC, RAS inhibition was its "reprogram enablement" (RE) factor. Each cancer likely has its own RE factor; identifying it may illuminate pre-malignant risk markers, better classifications, therapeutic targets, and tissue-specification of a previously pluripotent, now neoplastic, cell.


Assuntos
Bioensaio/métodos , Carcinogênese/patologia , Reprogramação Celular , Camadas Germinativas/patologia , Neoplasias/patologia , Diferenciação Celular/genética , Reprogramação Celular/genética , Metilação de DNA/genética , Regulação para Baixo/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Vírus Sendai/fisiologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Transcrição Gênica , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Mol Reprod Dev ; 87(6): 663-665, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424848

RESUMO

Using auto-erasable Sendai virus vector, we generated ciPSC line. After several passages, virus was not present in ciPSCs by RT-PCR. ciPSCs from canine PBMCs had pluripotent state, differentiated all three germ layers in vitro, and had normal 78 XX karyotype. These results proved that PBMCs were one of the good cell sources to generate ciPSC lines from companion and patient dogs.


Assuntos
Cães , Células-Tronco Pluripotentes Induzidas/fisiologia , Leucócitos Mononucleares/fisiologia , Cultura Primária de Células , Vírus Sendai/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Transformação Celular Viral/genética , Reprogramação Celular/genética , Feminino , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Cariótipo , Leucócitos Mononucleares/citologia , Cultura Primária de Células/métodos , Cultura Primária de Células/veterinária , Vírus Sendai/genética
16.
J Biol Chem ; 295(14): 4438-4450, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32102850

RESUMO

Animal cells use pattern-recognition receptors (PRRs) to detect specific pathogens. Pathogen detection mounts an appropriate immune response, including interferon and cytokine induction. The intracellular PRR-signaling pathways that detect DNA viruses have been characterized, particularly in myeloid cells. In these pathways, cGMP-AMP synthase (cGAS) and the pyrin and HIN domain family member (PYHIN) protein interferon-γ-inducible protein 16 (IFI16) detect DNA and signal via stimulator of interferon genes protein (STING). However, although airway epithelial cells are frontline sentinels in detecting pathogens, information on how they respond to DNA viruses is limited, and the roles of PYHIN proteins in these cells are unknown. Here, we examined expression and activities of cGAS, STING, and PYHINs in human lung epithelial cells. A549 epithelial cells, commonly used for RNA-sensing studies, failed to respond to DNA because they lacked STING expression, and ectopic STING expression restored a cGAS-dependent DNA response in these cells. In contrast, NuLi-1 immortalized human bronchial epithelial cells did express STING, which was activated after DNA stimulation and mediated DNA-dependent gene induction. PYHIN1, which like IFI16 has been proposed to be a viral DNA sensor, was the only PYHIN protein expressed in both airway epithelial cell types. However, rather than having a role in DNA sensing, PYHIN1 induced proinflammatory cytokines in response to interleukin-1 (IL-1) or tumor necrosis factor α (TNFα) stimulation. Of note, PYHIN1, via its HIN domain, directly induced IL-6 and TNFα transcription, revealing that PYHIN proteins play a role in proinflammatory gene induction in airway epithelial cells.


Assuntos
Citocinas/metabolismo , DNA Viral/metabolismo , Imunidade Inata , Proteínas Nucleares/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Vírus Sendai/genética , Vírus Sendai/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Curr Protoc Stem Cell Biol ; 52(1): e103, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31977148

RESUMO

Translating human induced pluripotent stem cell (hiPSC)-derived cells and tissues into the clinic requires streamlined and reliable production of clinical-grade hiPSCs. This article describes an entirely animal component-free procedure for the reliable derivation of stable hiPSC lines from donor peripheral blood mononuclear cells (PBMCs) using only autologous patient materials and xeno-free reagents. PBMCs are isolated from a whole blood donation, from which a small amount of patient serum is also generated. The PBMCs are then expanded prior to reprogramming in an animal component-free erythroblast growth medium supplemented with autologous patient serum, thereby eliminating the need for animal serum. After expansion, the erythroblasts are reprogrammed using either cGMP-grade Sendai viral particles (CytoTune™ 2.1 kit) or episomally replicating reprogramming plasmids (Epi5™ kit), both commercially available. Expansion of emerging hiPSCs on a recombinant cGMP-grade human laminin substrate is compatible with a number of xeno-free or chemically defined media (some available as cGMP-grade reagents), such as E8, Nutristem, Stemfit, or mTeSR Plus. hiPSC lines derived using this method display expression of expected surface markers and transcription factors, loss of the reprogramming agent-derived nucleic acids, genetic stability, and the ability to robustly differentiate in vitro to multiple lineages. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Isolating peripheral blood mononuclear cells using CPT tubes Support Protocol 1: Removal of clotting factors to produce serum from autologous plasma collected in Basic Protocol 1 Basic Protocol 2: PBMC expansion in an animal-free erythroblast expansion medium containing autologous serum Basic Protocol 3: Reprogramming of expanded PBMCs with Sendai viral reprogramming particles Alternate Protocol: Reprogramming of expanded PBMCs with episomal plasmids Basic Protocol 4: Picking, expanding, and cryopreserving hiPSC clones Support Protocol 2: Testing Sendai virus kit-reprogrammed hiPSC for absence of Sendai viral RNA Support Protocol 3: Testing Epi5 kit-reprogrammed hiPSC for absence of episomal plasmid DNA Support Protocol 4: Assessing the undifferentiated state of human pluripotent stem cell cultures by multi-color immunofluorescent staining and confocal imaging Support Protocol 5: Coating plates with extracellular matrices to support hiPSC attachment and expansion.


Assuntos
Reprogramação Celular , Eritrócitos/citologia , Laminina/farmacologia , Leucócitos Mononucleares/citologia , Diferenciação Celular , Proliferação de Células , Reprogramação Celular/efeitos dos fármacos , Células Clonais , Criopreservação , Eritrócitos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Plasmídeos/metabolismo , RNA Viral/metabolismo , Vírus Sendai/genética , Vírus Sendai/fisiologia , Soro
18.
J Biol Chem ; 295(2): 444-457, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767682

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that suppress the expression of multiple genes and are involved in numerous biologic functions and disorders, including human diseases. Here, we report that two miRNAs, miR-302b and miR-372, target mitochondrial-mediated antiviral innate immunity by regulating mitochondrial dynamics and metabolic demand. Using human cell lines transfected with the synthetic analog of viral dsRNA, poly(I-C), or challenged with Sendai virus, we found that both miRNAs are up-regulated in the cells late after viral infection and ultimately terminate the production of type I interferons and inflammatory cytokines. We found that miR-302b and miR-372 are involved in dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and disrupt mitochondrial metabolism by attenuating solute carrier family 25 member 12 (SLC25A12), a member of the SLC25 family. Neutralizing the effects of the two miRNAs through specific inhibitors re-established the mitochondrial dynamics and the antiviral responses. We found that SLC25A12 contributes to regulating the antiviral response by inducing mitochondrial-related metabolite changes in the organelle. Structure-function analysis indicated that SLC25A12, as part of a prohibitin complex, associates with the mitochondrial antiviral-signaling protein in mitochondria, providing structural insight into the regulation of the mitochondrial-mediated antiviral response. Our results contribute to the understanding of how miRNAs modulate the innate immune response by altering mitochondrial dynamics and metabolic demand. Manipulating the activities of miR-302b and miR-372 may be a potential therapeutic approach to target RNA viruses.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , MicroRNAs/imunologia , Mitocôndrias/imunologia , Mitocôndrias/virologia , Proteínas de Transporte da Membrana Mitocondrial/imunologia , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/virologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/virologia , Vírus Sendai/imunologia
19.
Stem Cell Res ; 40: 101574, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31627126

RESUMO

The familial form of Alzheimer's disease (FAD), which is caused by mutations in PRESENILIN 1 (PSEN1) and amyloid precursor protein (APP) genes, represents less than 5% of all AD cases and has an early-onset. We report the generation and characterization of an iPSC line derived from a FAD patient carrying the PSEN1-G206D mutation. The iPSC line maintained the original genotype, a normal karyotype, was free from Sendai viral vectors and reprogramming factors (OCT4, SOX2, KLF4 and c-MYC), presented a typical morphology, expressed endogenous pluripotency markers, and could be differentiated into ectodermal, mesodermal and endodermal cells, confirming its pluripotency.


Assuntos
Doença de Alzheimer/genética , Linhagem Celular/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Presenilina-1/genética , Adulto , Doença de Alzheimer/metabolismo , Diferenciação Celular , Linhagem Celular/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Mutação de Sentido Incorreto , Presenilina-1/metabolismo , Vírus Sendai/genética , Vírus Sendai/fisiologia , Integração Viral
20.
Viruses ; 11(11)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652964

RESUMO

Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins (Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones (≥300 nt) were related to viral sequences, of which 68 contigs had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus/isolamento & purificação , Mamíferos/virologia , Infecções por Respirovirus/veterinária , Vírus Sendai/isolamento & purificação , Animais , Coronavirus/classificação , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/virologia , Espécies em Perigo de Extinção/estatística & dados numéricos , Metagenômica , Filogenia , Infecções por Respirovirus/virologia , Vírus Sendai/classificação , Vírus Sendai/genética , Vírus Sendai/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...