Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Virol J ; 21(1): 157, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992629

RESUMO

Newborn piglets' health is seriously threatened by the porcine epidemic diarrhea virus (PEDV), which also has a significant effect on the pig industry. The gut microbiota produces butyrate, an abundant metabolite that modulates intestinal function through many methods to improve immunological and intestinal barrier function. The objective of this investigation was to ascertain how elevated butyrate concentrations impacted the host transcriptional profile of PEDV CV777 strain infection. Our findings showed that higher concentrations of butyrate have a stronger inhibitory effect on PEDV CV777 strain infection. According to RNA-seq data, higher concentrations of butyrate induced more significant transcriptional changes in IPEC-J2 cells, and signaling pathways such as PI3K-AKT may play a role in the inhibition of PEDV CV777 strain by high concentrations of butyrate. Ultimately, we offer a theoretical and experimental framework for future research and development of novel approaches to harness butyrate's antiviral infection properties.


Assuntos
Butiratos , Células Epiteliais , Vírus da Diarreia Epidêmica Suína , Animais , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Butiratos/farmacologia , Butiratos/metabolismo , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Doenças dos Suínos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Antivirais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Mucosa Intestinal/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Intestinos/virologia
2.
PLoS Pathog ; 20(6): e1012305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905309

RESUMO

PoRVA and PEDV coinfections are extremely common in clinical practice. Although coinfections of PoRVA and PEDV are known to result in increased mortality, the underlying mechanism remains unknown. Here, we found that PoRVA infection promoted PEDV infection in vivo and in vitro and that PoRVA G9P[23] (RVA-HNNY strain) enhanced PEDV replication more significantly than did PoRVA G5P[7] (RVA-SXXA strain). Metabolomic analysis revealed that RVA-HNNY more efficiently induced an increase in the intracellular glutamine content in porcine small intestinal epithelial cells than did RVA-SXXA, which more markedly promoted ATP production to facilitate PEDV replication, whereas glutamine deprivation abrogated the effect of PoRVA infection on promoting PEDV replication. Further studies showed that PoRVA infection promoted glutamine uptake by upregulating the expression of the glutamine transporter protein SLC1A5. In SLC1A5 knockout cells, PoRVA infection neither elevated intracellular glutamine nor promoted PEDV replication. During PoRVA infection, the activity and protein expression levels of glutamine catabolism-related enzymes (GLS1 and GLUD1) were also significantly increased promoting ATP production through glutamine anaplerosis into the TCA cycle. Consistent with that, siRNAs or inhibitors of GLS1 and GLUD1 significantly inhibited the promotion of PEDV replication by PoRVA. Notably, RVA-HNNY infection more markedly promoted SLC1A5, GLS1 and GLUD1 expression to more significantly increase the uptake and catabolism of glutamine than RVA-SXXA infection. Collectively, our findings illuminate a novel mechanism by which PoRVA infection promotes PEDV infection and reveal that the modulation of glutamine uptake is key for the different efficiencies of PoRVA G9P[23] and PoRVA G5P[7] in promoting PEDV replication.


Assuntos
Glutamina , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Glutamina/metabolismo , Animais , Replicação Viral/fisiologia , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Doenças dos Suínos/metabolismo , Chlorocebus aethiops
3.
Vet Microbiol ; 295: 110152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896938

RESUMO

The intestinal barrier of newborn piglets is vulnerable and underdeveloped, making them susceptible to enteric virus infections. Benzoic acid (BA), employed as a growth promoter, exhibits the potential to enhance the gut health of piglets by modulating intestinal morphometry and tight junction dynamics. However, the extent to which BA regulates the intestinal mucus barrier through its impact on stem cells remains inadequately elucidated. Therefore, this study was conducted to investigate the effects of BA on the intestinal barrier and the differentiation of intestinal stem cells, employing in vivo piglet and in vitro intestinal organoid models. Our investigation revealed a significant increase in the number of goblet cells within the small intestine, as well as the strengthening of the mucus barrier in vivo following oral treatment with BA, providing partial protection against PEDV infection in piglets. Additionally, in vitro cultivation of enteroids with BA led to a notable increase in the number of MUC2+ GCs, indicating the promotion of GC differentiation by BA. Furthermore, transcriptome analysis revealed an upregulation of the number of GCs and the expression of cell vesicle transport-related genes during BA stimulation, accompanied by the downregulation of the Wnt and Notch signaling pathways. Mechanistically, MCT1 facilitated the transport of BA, subsequently activating the MAPK pathway to mediate GC differentiation. Overall, this study highlights a novel function for BA as a feed additive in enhancing the intestinal mucus barrier by promoting intestinal GC differentiation, and further prevents viral infection in piglets.


Assuntos
Ácido Benzoico , Infecções por Coronavirus , Mucosa Intestinal , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Ácido Benzoico/farmacologia , Doenças dos Suínos/virologia , Doenças dos Suínos/tratamento farmacológico , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Animais Recém-Nascidos , Células Caliciformes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Organoides/virologia , Organoides/efeitos dos fármacos , Intestinos/virologia , Intestinos/efeitos dos fármacos
4.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789039

RESUMO

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Assuntos
Calmodulina , Endossomos , Imunidade Inata , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Calmodulina/metabolismo , Calmodulina/genética , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Células Vero , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interferon beta/metabolismo
5.
Vet Microbiol ; 294: 110124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795403

RESUMO

PEDV, a single-stranded RNA virus, causes significant economic losses in the pig industry. Sin3-associated protein 18 (SAP18) is known for its role in transcriptional inhibition and RNA splicing. However, research on SAP18's involvement in PEDV infection is limited. Here, we identified an interaction between SAP18 and PEDV nonstructural protein 10 (Nsp10) using immunoprecipitation-mass spectrometry (IP-MS) and confirmed it through immunoprecipitation and laser confocal microscopy. Additionally, PEDV Nsp10 reduced SAP18 protein levels and induced its cytoplasmic accumulation. Overexpressing SAP18 suppressed PEDV replication, meanwhile its knockdown via short interfering RNA (siRNA) enhanced replication. SAP18 overexpression boosted IRF3 and NF-κB P65 phosphorylation, nuclear translocation, and IFN-ß antiviral response. Furthermore, SAP18 upregulated RIG-I expression and facilitated its dephosphorylation, while SAP18 knockdown had the opposite effect. Finally, SAP18 interacted with phosphatase 1 (PP1) catalytic subunit alpha (PPP1CA), promoting PPP1CA-RIG-I interaction during PEDV infection. These findings highlight SAP18's role in activating the type I interferon pathway and inhibiting viral replication by promoting RIG-I dephosphorylation through its interaction with PPP1CA.


Assuntos
Vírus da Diarreia Epidêmica Suína , Proteínas não Estruturais Virais , Replicação Viral , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Vírus da Diarreia Epidêmica Suína/genética , Fosforilação , Suínos , Linhagem Celular , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Chlorocebus aethiops
6.
Sci Rep ; 14(1): 12279, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811677

RESUMO

Practice of inoculating porcine epidemic diarrhea virus (PEDV) in piglets generating feedback material might influence the genetic evolution and attenuation of PEDV. The study was conducted to evaluate evolutionary rate and attenuation following serial in vitro and in vivo propagation. In the study, PED-JPFP0-PJ, Passage 0 (P0), was isolated from infected pigs and serially passaged in Vero cells for 5 consecutive times, P1-P5. P0, P2 and P5 were then subjected to orally inoculate 3-day-old piglets. At 24 h post inoculation, intestines of each passage (F1), were collected, and subsequently sub-passaged in piglets for 2 additional passages (F2-F3). Virus titration, PEDV genomic copies number, VH:CD ratios, and immunohistochemistry were evaluated. S and ORF3 genes were characterized. The results of the study demonstrated that virus titer and virulence were negatively correlated with increased passages, both in vitro and in vivo. Increased substitution rate was observed in higher passages. The evolutionary rate of S gene was higher than that of ORF3. Seven aa changes at positions 223, 291, 317, 607, 694, 1114 and 1199, with reduced N-linked glycan were observed in P5F3. In conclusion, serial passage of PEDV, both in vitro and in vivo, influence the genetic development and the attenuation of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Virulência , Células Vero , Chlorocebus aethiops , Doenças dos Suínos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Evolução Molecular , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Vet Microbiol ; 293: 110100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718527

RESUMO

Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.


Assuntos
Coinfecção , Infecções por Coronavirus , Intestinos , Kobuvirus , Linfócitos , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Coinfecção/virologia , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Linfócitos/virologia , Kobuvirus/patogenicidade , Kobuvirus/genética , Intestinos/virologia , Diarreia/virologia , Diarreia/veterinária , Replicação Viral , Gastroenterite/virologia , Gastroenterite/veterinária , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia
8.
Virol J ; 21(1): 120, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816738

RESUMO

BACKGROUND: The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS: In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS: When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION: As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.


Assuntos
Antivirais , Vírus da Diarreia Epidêmica Suína , Compostos de Silício , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Animais , Antivirais/farmacologia , Compostos de Silício/farmacologia , Compostos de Silício/química , Chlorocebus aethiops , Compostos de Magnésio/farmacologia , Suínos , Células Vero , Carga Viral/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Doenças dos Suínos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Microscopia Eletrônica de Transmissão
9.
Vet Microbiol ; 293: 110095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643723

RESUMO

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Assuntos
Fator de Iniciação 2 em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Transdução de Sinais , Grânulos de Estresse , Proteínas do Envelope Viral , eIF-2 Quinase , Animais , Chlorocebus aethiops , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Suínos , Células Vero , Proteínas do Envelope Viral/metabolismo
10.
Vet Immunol Immunopathol ; 271: 110753, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608406

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes immensely large economic losses worldwide in the swine industry. PEDV attacks the intestine, disrupts intestinal epithelium morphology and barrier integrity, and results in profound diarrhea and high mortality. A commercially available isotonic protein solution (IPS) (Tonisity Px) has anecdotally been reported to be effective in supportive treatment of piglets with active PEDV infections. This study evaluated the effects of supplementing (or not) the drinking water of 14 day old PEDV-infected piglets with the IPS on the content of E-cadherin, fibronectin, interferon-alpha (IFN-α), and matrix metalloproteinase 9 (MMP-9) in duodenal tissue. The content of PEDV DNA in feces was also measured. Though both groups had similar PEDV shedding at day 1, IPS piglets had significantly lower PEDV shedding at day 5, 14 and 21. The IPS group also had a shorter duration of PEDV virus shedding. Levels of E-cadherin and fibronectin, both of which are structural proteins in the intestine, remained unchanged from baseline in the IPS group, whereas the same molecules decreased significantly in the control group. IFN-α, an antiviral cytokine, and MMP-9, an enzyme that aids in tissue remodeling, were increased at days 5 and 14 post infection, and then decreased at day 21 post-infection in the IPS group compared to control. Overall, the IPS used in this study enhanced epithelial intercellular adhesion (E-cadherin) and extracellular matrix structure (fibronectin), resulted in significantand favorable changes in MMP-9 activity, and favorably modulated IFN-α production. This is the first report of this panel of biomarkers, especially MMP-9 and IFN-α, in the face of in vivo PEDV infection. This is also the first report to investigate a commercially available swine product that does not need to be administered in solid feed, and that is already registered for use throughout Asia, Europe, South America, and North America. Overall, the results of this study serve to clarify the behavior of 4 key biomarkers in the presence of in vivo PEDV infection. The results also indicate that IPS (Tonisity Px) supplementation is a viable intervention to modulate the porcine intestinal immune response with favorable effects on the intestine.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Eliminação de Partículas Virais , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Vírus da Diarreia Epidêmica Suína/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Fibronectinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Caderinas/metabolismo , Intestinos/imunologia , Intestinos/virologia , Interferon-alfa/imunologia , Adesão Celular , Mucosa Intestinal/imunologia
11.
Virology ; 594: 110039, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492520

RESUMO

Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the global swine industry, demanding a thorough understanding of its cellular invasion mechanism for effective interventions. This study meticulously investigates the impact of O- and N-linked glycans on PEDV proteins and host cell interaction, shedding light on their influence on the virus's invasion process. Utilizing CRISPR-Cas9 technology to inhibit cell surface O- and N-linked glycan synthesis demonstrated no discernible impact on virus infection. However, progeny PEDV strains lacking these glycans exhibited a minor effect of O-linked glycans on virus infection. Conversely, a notable 40% reduction in infectivity was observed when the virus surface lacked N-linked glycans, emphasizing their pivotal role in facilitating virus recognition and binding to host cells. Additionally, inhibition studies utilizing kifunensine, a natural glycosidase I inhibitor, reaffirmed the significant role of N-linked glycans in virus infection. Inhibiting N-linked glycan synthesis with kifunensine substantially decreased virus entry into cells and potentially influenced spike protein expression. Assessment of the stability and recovery potential of N-linked glycan-deficient strains underscored the critical importance of N-glycans at various stages of the virus lifecycle. In vivo experiments infecting piglets with N-glycan-deficient strains exhibited milder clinical symptoms, reduced virus excretion, and less severe pathological lesions compared to conventional strains. These findings offer promising translational applications, proposing N-glycosylation inhibitors as potential therapeutic interventions against PEDV. The utilization of these inhibitors might mitigate virus invasion and disease transmission, providing avenues for effective antiviral strategies and vaccine development. Nonetheless, further research is warranted to elucidate the precise mechanisms of N-linked glycans in PEDV infection for comprehensive clinical applications.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Internalização do Vírus , Processamento de Proteína Pós-Traducional , Polissacarídeos
12.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
13.
Front Immunol ; 15: 1323866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322259

RESUMO

The present study was conducted to decipher the protection effects of ellagic acid (EA) on piglets infected with porcine epidemic diarrhea virus (PEDV). Thirty 7-day-old piglets were randomly assigned to three treatment groups: control, PEDV, and EA + PEDV groups. After a 3-day period of adaption, piglets in the EA + PEDV group were orally administered with 20 mg/kg·BW EA during days 4-11 of the trial. On day 8, piglets were orally administered with PEDV at a dose of 106 TCID50 (50% tissue culture infectious dose) per pig. Additionally, intestinal porcine epithelial (IPEC-1) cells infected with PEDV were used to investigate the anti-PEDV effect of EA in vitro. The results showed that EA at a dose of 10-40 µmol/L increased the viability of PEDV-infected IPEC-1 cells, and EA administration mitigated intestinal edema in piglets challenged with PEDV. Further studies indicated that EA treatment significantly increased the proportion of white blood cells in blood and concentrations of IL-6, IL-1ß, and IL-10 in the serum, but decreased the TNF-α content and gene expression of IL-6, IL-1ß, TNF-α, and CXCL2 in the jejunum. Moreover, EA intervention considerably elevated the activity of total superoxide dismutase (T-SOD), but decreased the H2O2 concentration in the ileum of piglets. Importantly, EA suppressed the increased expression of antiviral-related genes and proteins (including MXI, ISG15, HSP70, and p-IRF7) induced by PEDV challenge in the jejunum. Furthermore, PEDV infection increased the protein abundance of p-JAK2 and p-STAT3, which were further enhanced by EA supplementation. In conclusion, our results revealed that EA could promote the restoration of intestinal homeostasis by regulating the interferon pathway that was interrelated with the activation of JAK2/STAT3 signaling. These findings provide theoretical basis for the use of EA as a therapy targeting PEDV infection in piglets.


Assuntos
Vírus da Diarreia Epidêmica Suína , Suínos , Animais , Vírus da Diarreia Epidêmica Suína/fisiologia , Ácido Elágico , Fator de Necrose Tumoral alfa , Peróxido de Hidrogênio , Interleucina-6
14.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411947

RESUMO

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Interferons/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Replicação Viral
15.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396878

RESUMO

Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.


Assuntos
Antracenos , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Linhagem Celular , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteína X Associada a bcl-2/genética , Proteína Supressora de Tumor p53/genética , Tibet
16.
Virus Res ; 340: 199300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092254

RESUMO

ACE2 has been confirmed to be a functional receptor for SARS-CoV and SARS-CoV-2, but research on animal coronaviruses, especially PEDV, are still unknown. The present study investigated whether ACE2 plays a role in receptor recognition and subsequent infection during PEDV invasion of host cells. IPEC-J2 cells stably expressing porcine ACE2 did not increase the production of PEDV-N but inhibited its expression. Porcine ACE2 knockout cells was generated by CRISPR/Cas9 genome editing in IPEC-J2 cells. The expression of PEDV-N did not decrease but slightly increased. The Co-IP results showed that there was no significant association between ACE2 and PEDV-S. There were no obvious interaction between PEDV-S, PEDV-E, PEDV-M and porcine ACE2 promoters, but PEDV-N could inhibit the activity of ACE2 promoters. PEDV-N degraded STAT1 and prevented its phosphorylation, thereby inhibiting the expression of interferon-stimulated genes. Repeated infection of PEDV further confirmed the above results. PEDV activated ACE-Ang II-AT1R axis, while ACE2-Ang (1-7)-MasR axis activity was decreased and inflammatory response was intensified. However, excess ACE2 can reverse this reaction. These results reveal that ACE2 does not facilitate PEDV entry into cells, but relieves PEDV-induced inflammation by promoting STAT1 phosphorylation.


Assuntos
Vírus da Diarreia Epidêmica Suína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Chlorocebus aethiops , Suínos , Animais , Células Vero , Linhagem Celular , Vírus da Diarreia Epidêmica Suína/fisiologia , Enzima de Conversão de Angiotensina 2/genética , Fosforilação , SARS-CoV-2 , Células Epiteliais
17.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084960

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/tratamento farmacológico , Diarreia/veterinária , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo/metabolismo , Pemetrexede/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico
18.
Virology ; 589: 109923, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977082

RESUMO

Porcine epidemic diarrhea (PED) is an acute, severe, highly contagious disease. Porcine epidemic diarrhea virus (PEDV) strains are prone to mutation, and the immune response induced by traditional vaccines may not be strong enough to be effective against the virus. Therefore, there is an urgent need to develop novel anti-PEDV drugs. This study aimed to explore the therapeutic effects of quercetin in PEDV infections in vitro (Vero cells) and in vivo (suckling piglets). Using transmission electron microscopy and laser confocal microscopy, we found that PEDV infection promotes the accumulation of lipid droplets (LDs). In vitro, studies showed that quercetin inhibits LD accumulation by down-regulating NF-κB signaling and IL-1ß, IL-8, and IL-6 levels, thereby inhibiting viral replication. In vivo, studies in pigs demonstrated that quercetin can effectively relieve the clinical symptoms and intestinal injury caused by PEDV. Collectively, our findings suggest that quercetin inhibits PEDV replication both in vivo and in vitro, which provides a new direction for the development of PED antiviral drugs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Quercetina/farmacologia , Quercetina/uso terapêutico , Células Vero , Vírus da Diarreia Epidêmica Suína/fisiologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia
19.
Microb Pathog ; 186: 106503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142905

RESUMO

Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly contagious enteric disease with a high mortality rate in suckling piglets. Identification of proteins associated with PEDV infection may provide insights into the pathogenesis of this viral disease. In this study, we employed tandem mass tag (TMT) quantitative protein analysis to investigate proteomic changes in PK15 cells following PEDV infection, and differential protein expression profiles were obtained at 0 h, 24 h, and 48 h post-infection. Overall, a total of 6330 proteins were identified. Applying criteria for fold change >1.5 < 0.67 and p-values <0.05 resulted in the identification of 59 up-regulated proteins and 103 down-regulated proteins that exhibited significant alterations in the H24 group compared to the H0 group. The H48 group demonstrated significant upregulation of 110 proteins and downregulation of 144 proteins compared to the H0 group; additionally, there were also 10 upregulated and 30 downregulated proteins in the H48 group when compared to the H24 group. These differentially expressed proteins (DEPs) were involved in immune response regulation, signal transduction, lipid transport and metabolism processes as well as cell apoptosis pathways. Based on these DEPs, we propose that PEDV may disrupt signal transduction pathways along with lipid transport and metabolism processes leading to maximal viral replication, it may also trigger inflammatory cascades accordingly. These findings could provide valuable information for elucidating specific pathogenesis related to PEDV infection while contributing towards developing new antiviral strategies.


Assuntos
Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteômica/métodos , Proteínas/metabolismo , Transdução de Sinais , Lipídeos
20.
J Virol ; 97(12): e0011523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038431

RESUMO

IMPORTANCE: Porcine epidemic diarrhea, characterized by vomiting, dehydration, and diarrhea, is an acute and highly contagious enteric disease caused by porcine epidemic diarrhea virus (PEDV) in neonatal piglets. This disease has caused large economic losses to the porcine industry worldwide. Thus, identifying the host factors involved in PEDV infection is important to develop novel strategies to control PEDV transmission. This study shows that PEDV infection upregulates karyopherin α 2 (KPNA2) expression in Vero and intestinal epithelial (IEC) cells. KPNA2 binds to and degrades the PEDV E protein via autophagy to suppress PEDV replication. These results suggest that KPNA2 plays an antiviral role against PEDV. Specifically, knockdown of endogenous KPNA2 enhances PEDV replication, whereas its overexpression inhibits PEDV replication. Our data provide novel KPNA2-mediated viral restriction mechanisms in which KPNA2 suppresses PEDV replication by targeting and degrading the viral E protein through autophagy. These mechanisms can be targeted in future studies to develop novel strategies to control PEDV infection.


Assuntos
Autofagia , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos , Células Vero , Proteínas do Envelope Viral , Proteínas Virais , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...