Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932241

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Assuntos
Vírus da Febre Suína Africana , Quinase I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais , Animais , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Suínos , Quinase I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Humanos , Células HEK293 , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Autofagia , Ligação Proteica
2.
Viruses ; 16(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543715

RESUMO

African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Poxviridae , Vacínia , Animais , Suínos , Vaccinia virus/genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Homologia de Sequência
3.
Virology ; 593: 110014, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401340

RESUMO

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Piridinas , Tiossemicarbazonas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/prevenção & controle , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/metabolismo , Citarabina/metabolismo , Citarabina/farmacologia , Replicação Viral
4.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353534

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/fisiologia , Suínos , Vacinas/metabolismo , Replicação Viral
5.
Virology ; 590: 109967, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086285

RESUMO

The African Swine Fever Virus (ASFV) is responsible for causing African Swine Fever (ASF), a severe contagious disease characterized by hemorrhagic symptoms. The p30 protein of ASFV is the most abundantly expressed viral protein. It is reported to be antigenic and has recognized phosphorylation, glycosylation, and membrane attachment sites, which also shows that the C-terminal region of p30 is more active than the N-terminal region. The present study reports the unique RNase activity of recombinant p30. The RNase activity of p30 was stable at an optimum temperature of 37 °C, and the maximum activity was recorded at pH 7-9 in the presence of monovalent salts. The mutant of p30 (p30m), where cysteine was mutated to alanine at position 109, showed a loss of RNase activity. Our understanding of ASFV biology is significantly less; until now, we have little knowledge about the functions of its proteins. The results of the present study will assist in exploring the biology of ASFV and the role of its protein in counteracting the host immune response.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/diagnóstico , Proteínas Virais/metabolismo , Endorribonucleases/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo
6.
Vet Res ; 54(1): 121, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102697

RESUMO

African swine fever virus (ASFV) is a substantial threat to pig populations worldwide, contributing to economic disruption and food security challenges. Its spread is attributed to the oronasal transmission route, particularly in animals with acute ASF. Our study addresses the understudied role of nasal mucosa in ASFV infection, using a nasal explant model. The explants remained viable and revealed a discernible ASFV infection in nasal septum and turbinates post-inoculation. Interestingly, more infected cells were found in the turbinates despite its thinner structure. Further analyses showed (i) a higher replication of genotype II strain BEL18 than genotype I strain E70 in the epithelial cell layer, (ii) a preference of ASFV infection for the lamina propria and a tropism of ASFV for various susceptible cell types in different areas in the nasal mucosa, including epithelial cells, macrophages, and endothelial cells. Using porcine respiratory epithelial cells (PoRECs), isolated from nasal tissue, we found a difference in infection mechanism between the two genotypes, with genotype I favoring the basolateral surface and genotype II preferring the apical surface. Moreover, disruption of intercellular junctions enhanced infection for genotype I. This study demonstrated that ASFV may use the respiratory mucosa for entry using different cell types for replication with a genotype difference in their infection of respiratory epithelial cells.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Células Endoteliais , Genótipo , Traqueia , Sus scrofa
7.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4796-4808, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147982

RESUMO

This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.


Assuntos
Vírus da Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética
8.
Cell Commun Signal ; 21(1): 352, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098077

RESUMO

Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.


Assuntos
Vírus da Febre Suína Africana , Viroses , Humanos , Animais , Suínos , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Vírus da Febre Suína Africana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Colesterol/metabolismo
9.
Virulence ; 14(1): 2232707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37442088

RESUMO

Viruses have developed different strategies to hijack mitophagy to facilitate their replication. However, whether and how African swine fever virus (ASFV) regulates mitophagy are largely unknown. Here, we found that the ASFV-encoded p17 induced mitophagy. Coimmunoprecipitation/mass spectrometry assays identified translocase of outer mitochondrial membrane 70 (TOMM70) as the protein that interacted with p17. The binding of TOMM70 to p17 promoted the binding of the mitophagy receptor SQSTM1 to TOMM70, led to engulfment of mitochondria by autophagosomes, and consequently decreased the number of mitochondria. Consistently, the levels of TOMM70 and TOMM20 decreased substantially after p17 expression or ASFV infection. Furthermore, p17-mediated mitophagy resulted in the degradation of mitochondrial antiviral signalling proteins and inhibited the production of IFN-α, IL-6 and TNFα. Overall, our findings suggest that ASFV p17 regulates innate immunity by inducing mitophagy via the interaction of SQSTM1 with TOMM70.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Febre Suína Africana/metabolismo
10.
ACS Chem Biol ; 18(8): 1808-1820, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498174

RESUMO

The constant and the sudden emergence of zoonotic human and animal viruses is a significant threat to human health, the world economy, and the world food supply. This has necessitated the development of broad-spectrum therapeutic strategies to combat these emerging pathogens. Mechanisms that are essential for viral replication and propagation have been successfully targeted in the past to develop broad-spectrum therapeutics that can be readily repurposed to combat new zoonotic pathogens. Because of the importance of viral RNA capping enzymes to viral replication and pathogenesis, as well as their presence in both DNA and RNA viruses, these viral proteins have been a long-standing therapeutic target. Here, we use genome sequencing information and yeast-based platforms (YeRC0M) to identify, characterize, and target viral genome-encoded essential RNA capping enzymes from emerging strains of DNA viruses, i.e., Monkeypox virus and African Swine Fever Virus, which are a significant threat to human and domestic animal health. We first identified and biochemically characterized these viral RNA capping enzymes and their necessary protein domains. We observed significant differences in functional protein domains and organization for RNA capping enzymes from emerging DNA viruses in comparison to emerging RNA viruses. We also observed several differences in the biochemical properties of these viral RNA capping enzymes using our phenotypic yeast-based approaches (YeRC0M) as compared to the previous in vitro studies. Further, using directed evolution, we were able to identify inactivation and attenuation mutations in these essential viral RNA capping enzymes; these data could have implications on virus biocontainment as well as live attenuated vaccine development. We also developed methods that would facilitate high-throughput phenotypic screening to identify broad-spectrum inhibitors that selectively target viral RNA capping enzymes over host RNA capping enzymes. As demonstrated here, our approaches to identify, characterize, and target viral genome-encoded essential RNA capping enzymes are highly modular and can be readily adapted for targeting emerging viral pathogens as well as their variants that emerge in the future.


Assuntos
Vírus da Febre Suína Africana , Vírus , Animais , Humanos , Suínos , Saccharomyces cerevisiae/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Vírus/genética , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Vírus de DNA/genética , Vírus de DNA/metabolismo
12.
J Virol ; 97(6): e0026823, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37191520

RESUMO

African swine fever virus (ASFV), the cause of a highly contagious hemorrhagic and fatal disease of domestic pigs, has a complex multilayer structure. The inner capsid of ASFV located underneath the inner membrane enwraps the genome-containing nucleoid and is likely the assembly of proteolytic products from the virally encoded polyproteins pp220 and pp62. Here, we report the crystal structure of ASFV p150△NC, a major middle fragment of the pp220 proteolytic product p150. The structure of ASFV p150△NC contains mainly helices and has a triangular plate-like shape. The triangular plate is approximately 38 Šin thickness, and the edge of the triangular plate is approximately 90 Šlong. The structure of ASFV p150△NC is not homologous to any of the known viral capsid proteins. Further analysis of the cryo-electron microscopy maps of the ASFV and the homologous faustovirus inner capsids revealed that p150 or the p150-like protein of faustovirus assembles to form screwed propeller-shaped hexametric and pentametric capsomeres of the icosahedral inner capsids. Complexes of the C terminus of p150 and other proteolytic products of pp220 likely mediate interactions between the capsomeres. Together, these findings provide new insights into the assembling of ASFV inner capsid and provide a reference for understanding the assembly of the inner capsids of nucleocytoplasmic large DNA viruses (NCLDV). IMPORTANCE African swine fever virus has caused catastrophic destruction to the pork industry worldwide since it was first discovered in Kenya in 1921. The architecture of ASFV is complicated, with two protein shells and two membrane envelopes. Currently, mechanisms involved in the assembly of the ASFV inner core shell are less understood. The structural studies of the ASFV inner capsid protein p150 performed in this research enable the building of a partial model of the icosahedral ASFV inner capsid, which provides a structural basis for understanding the structure and assembly of this complex virion. Furthermore, the structure of ASFV p150△NC represents a new type of fold for viral capsid assembly, which could be a common fold for the inner capsid assembly of nucleocytoplasmic large DNA viruses (NCLDV) and would facilitate the development of vaccine and antivirus drugs against these complex viruses.


Assuntos
Vírus da Febre Suína Africana , Capsídeo , Modelos Moleculares , Montagem de Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Sus scrofa , Cristalografia por Raios X , Estrutura Terciária de Proteína
13.
J Virol ; 97(6): e0035023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37212688

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Permeabilidade da Membrana Celular , Proteínas de Membrana , Proteínas Virais , Internalização do Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Genoma Viral , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Permeabilidade da Membrana Celular/genética
14.
Nucleic Acids Res ; 51(12): 6321-6336, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216593

RESUMO

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA-protein cross-links. Those are subject to proteolysis but the fate of the resulting AP-peptide cross-links (APPXLs) is unclear. Here, we report two in vitro models of APPXLs synthesized by cross-linking of DNA glycosylases Fpg and OGG1 to DNA followed by trypsinolysis. The reaction with Fpg produces a 10-mer peptide cross-linked through its N-terminus, while OGG1 yields a 23-mer peptide attached through an internal lysine. Both adducts strongly blocked Klenow fragment, phage RB69 polymerase, Saccharolobus solfataricus Dpo4, and African swine fever virus PolX. In the residual lesion bypass, mostly dAMP and dGMP were incorporated by Klenow and RB69 polymerases, while Dpo4 and PolX used primer/template misalignment. Of AP endonucleases involved in BER, Escherichia coli endonuclease IV and its yeast homolog Apn1p efficiently hydrolyzed both adducts. In contrast, E. coli exonuclease III and human APE1 showed little activity on APPXL substrates. Our data suggest that APPXLs produced by proteolysis of AP site-trapped proteins may be removed by the BER pathway, at least in bacterial and yeast cells.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Animais , Humanos , Vírus da Febre Suína Africana/metabolismo , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Escherichia coli/metabolismo , Peptídeos , Saccharomyces cerevisiae/metabolismo , Suínos , DNA Polimerase beta/metabolismo
15.
Anal Bioanal Chem ; 415(9): 1675-1685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36715708

RESUMO

Herein, we subtly engineered an amplified colorimetric biosensor for the cyclic detection of African swine fever virus DNA (ASFV-DNA), which associated the branched catalytic hairpin assembly (bCHA) amplification with G-quadruplex DNAzyme activity through triplex DNA formation. Firstly, a Y-shaped hairpin trimer was constructed for the dynamic self-assembly of DNA dendrimers. Then, in the presence of ASFV-DNA, the signal strand CP was opened, exposing the toehold regions, which would trigger the CHA cascade reaction between hairpin trimers. In the CHA cascade reaction, H1, H2, and H3 opened and bound in sequence, eventually forming the structure of DNA dendrimers. Subsequently, the obtained bCHA product was specifically recognized by the GGG repeat sequences of L1 and L2, then amplified by the synergistic effect of triplex DNA and the formation of asymmetric split G-quadruplex. Benefiting from the amplification properties of bCHA and the high peroxidase-like catalytic activity of asymmetrically split G-quadruplex DNAzymes, it could achieve effective colorimetric signal output in the presence of ASFV-DNA by means of triplex DNA formation. Under the optimal experimental conditions, this biosensor exhibited excellent sensitivity with a detection limit of 1.8 pM. Further, it was applied to the content detection of simulated samples of African swine fever, and the recoveries were 98.9 ~ 103.2%. This method has the advantages of simple operation, good selectivity, and high sensitivity, which is expected to be used for highly sensitive detection of actual samples of African swine fever virus.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Técnicas Biossensoriais , DNA Catalítico , Dendrímeros , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Colorimetria/métodos , Febre Suína Africana/diagnóstico , Entropia , DNA , DNA Catalítico/química , Técnicas Biossensoriais/métodos
16.
PLoS Pathog ; 19(1): e1011136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716344

RESUMO

African swine fever virus (ASFV) causes a devastating hemorrhagic disease with worldwide circulation and no widely available therapeutic prevention. The infectious particle has a multilayered architecture that is articulated upon an endoplasmic reticulum (ER)-derived inner envelope. This membrane acts as docking platform for the assembly of the outer icosahedral capsid and the underlying core shell, a bridging layer required for the formation of the central genome-containing nucleoid. While the details of outer capsid assembly are relatively well understood, those of core formation remain unclear. Here we report the functional characterization of pEP84R, a transmembrane polypeptide embedded in the inner envelope that surrounds the viral core. Using an ASFV recombinant inducibly expressing the EP84R gene, we show that absence of pEP84R results in the formation of non-infectious core-less icosahedral particles displaying a significant DNA-packaging defect. Concomitantly, aberrant core shell-like structures formed by co-assembly of viral polyproteins pp220 and pp62 are mistargeted to non-ER membranes, as also occurs when these are co-expressed in the absence of other viral proteins. Interestingly, co-expression of both polyproteins with pEP84R led to the formation of ER-targeted core shell-like assemblies and co-immunoprecipitation assays showed that pEP84R binds to the N-terminal region of pp220. Altogether, these results indicate that pEP84R plays a crucial role in core assembly by targeting the core shell polyproteins to the inner viral envelope, which enables subsequent genome packaging and nucleoid formation. These findings unveil a key regulatory mechanism for ASFV morphogenesis and identify a relevant novel target for the development of therapeutic tools against this re-emerging threat.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Montagem de Vírus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Poliproteínas/metabolismo , Proteínas de Membrana
17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478238

RESUMO

African swine fever (ASF) virus (ASFV) is responsible for one of the most severe swine diseases worldwide, with a morbidity rate of up to 100%; no vaccines or antiviral medicines are available against the virus. Exosomal miRNAs from individual cells can regulate the immune response to infectious diseases. In this study, pigs were infected with an ASFV Pig/HN/07 strain that was classified as acute form, and exosomal miRNA expression in the serum of infected pigs was analyzed using small RNA sequencing (small RNA-seq). Twenty-seven differentially expressed (DE) miRNAs were identified in the ASFV-infected pigs compared to that in the uninfected controls. Of these, 10 were upregulated and 17 were downregulated in the infected pigs. All DE miRNAs were analyzed using gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the DE miRNAs were found to be highly involved in T-cell receptor signaling, cGMP-PKG signaling, Toll-like receptor, MAPK signaling, and mTOR signaling pathways. Furthermore, the Cytoscape network analysis identified the network of interactions between DE miRNAs and target genes. Finally, the transcription levels of four miRNA genes (ssc-miR-24-3p, ssc-miR-130b-3p, ssc-let-7a, and ssc-let-7c) were examined using quantitative real-time PCR (qRT-PCR) and were found to be consistent with the small RNA-seq data. These DE miRNAs were associated with cellular genes involved in the pathways related to immune response, virus-host interactions, and several viral genes. Overall, our findings provide an important reference and improve our understanding of ASF pathogenesis and the immune or protective responses during an acute infection in the host.


African swine fever is a viral disease caused by African swine fever virus (ASFV) which induces a big threat to the pig industry in the world. To date, there are no vaccines or antiviral medicines against the ASFV. Therefore, it is important to improve the understanding of the pathogenesis of ASFV and host­pathogen interaction using miRNA that may regulate genes related to the immune system. This study aimed to investigate the differentially expressed (DE) miRNA in serum-derived exosomes from African swine fever virus infected pigs. We successfully infected pigs with an ASFV Pig/HN/07 strain and identified the DE miRNAs in serum-derived exosomes using small RNA sequencing. Our results showed that total of 27 miRNAs were differentially expressed in serum-derived exosomes from ASFV-infected pigs. We analyzed the small RNA sequencing results using gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and found that most DE miRNA may regulate the expression of genes related with the immune response pathway (T-cell receptor signaling pathway, cGMP-PKG signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, etc.).


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Exossomos , MicroRNAs , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA/veterinária
18.
Chinese Journal of Biotechnology ; (12): 4796-4808, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008059

RESUMO

This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.


Assuntos
Animais , Suínos , Vírus da Febre Suína Africana/metabolismo , Proteínas de Membrana/metabolismo , Imunidade Inata , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética
19.
Viruses ; 14(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36560646

RESUMO

African swine fever virus (ASFV) causes one of the most devastating diseases affecting pigs and wild suids, a worldwide epizootic situation exacerbated in recent years due to the lack of vaccine or effective treatment. ASFV has a restricted cell tropism, and is prone to replicate in porcine monocytes and alveolar macrophages with high efficiency. Here, the replication capabilities of ASFV were examined in swine pulmonary alveolar macrophages (PAMs) and compared with 3D4/21, PK-15, MA-104 and Marc-145 cell lines using PCR, qPCR and Western blot with monoclonal antibodies against the viral p30 and p72 proteins. The results showed that ASFV has a variety of infection characteristics in PAMs and showed four cell lines with distinct defects during virus early transcription-translation, genome replication and late protein synthesis. Furthermore, an antiviral role of the stress granule pathway was revealed against ASFV, and ASFV infection inhibited stress granule formation in PAMs but not 3D4/21. These results will help to deepen our knowledge on ASFV infection and to develop ASFV susceptible cell lines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/metabolismo , Replicação Viral , Antivirais/farmacologia , Monócitos
20.
J Virol ; 96(22): e0095422, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326277

RESUMO

The H240R protein (pH240R), encoded by the H240R gene of African swine fever virus (ASFV), is a 241-amino-acid capsid protein. We previously showed that the deletion of H240R from the ASFV genome, creating ASFV-ΔH240R, resulted in an approximately 2-log decrease in infectious virus production compared with the wild-type ASFV strain (ASFV-WT), and ASFV-ΔH240R induced higher interleukin 1ß (IL-1ß) production in porcine alveolar macrophages (PAMs) than did ASFV-WT, but the underlying mechanism remains to be elucidated. Here, we demonstrate that the activation of the NF-κB signaling and NLRP3 inflammasome was markedly induced in PAMs upon ASFV-ΔH240R infection compared with ASFV-WT. Moreover, pH240R inhibited NF-κB activation by interacting with NEMO and promoting the autophagy-mediated lysosomal degradation of NEMO, resulting in reduced pro-IL-1ß transcription. Strikingly, NLRP3 deficiency in PAMs inhibited the ASFV-ΔH240R-induced IL-1ß secretion and caspase 1 activation, indicating an essential role of NLRP3 inflammasome activation during ASFV-ΔH240R replication. Mechanistically, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Furthermore, the inhibition of the NF-κB signaling and NLRP3 inflammasome activation promoted ASFV-ΔH240R replication in PAMs. Taken together, the results of this study reveal an antagonistic mechanism by which pH240R suppresses the host immune response by manipulating activation of the NF-κB signaling and NLRP3 inflammasome, which might guide the rational design of live attenuated vaccines or therapeutic strategies against ASF in the future. IMPORTANCE African swine fever (ASF), a lethal hemorrhagic disease, is caused by African swine fever virus (ASFV). There are no commercially available vaccines or antivirals for the disease. Here, we showed that ASFV with a deletion of the H240R gene exhibits high-level expression of interleukin 1ß (IL-1ß), a proinflammatory cytokine, in porcine alveolar macrophages and that the H240R protein (pH240R) exhibits robust inhibitory effects on IL-1ß transcription and production. More specifically, pH240R inhibited NF-κB activation via the autophagy-mediated lysosomal degradation of NEMO, leading to the decrease of pro-IL-1ß transcription. In addition, pH240R interacted with NLRP3 to inhibit its oligomerization, leading to decreased IL-1ß production. Our results indicate that pH240R is involved in the evasion of host innate immunity and provide a novel target for the development of a live attenuated vaccine against ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...