Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0111523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796122

RESUMO

IMPORTANCE: Of the flaviviruses, only CSFV and bovine viral diarrhea virus express Npro as the non-structural protein which is not essential for viral replication but functions to dampen host innate immunity. We have deciphered a novel mechanism with which CSFV uses to evade the host antiviral immunity by the N-terminal domain of its Npro to facilitate proteasomal degradation of Sp1 with subsequent reduction of HDAC1 and ISG15 expression. This is distinct from earlier findings involving Npro-mediated IRF3 degradation via the C-terminal domain. This study provides insights for further studies on how HDAC1 plays its role in antiviral immunity, and if and how other viral proteins, such as the core protein of CSFV, the nucleocapsid protein of porcine epidemic diarrhea virus, or even other coronaviruses, exert antiviral immune responses via the Sp1-HDAC1 axis. Such research may lead to a deeper understanding of viral immune evasion strategies as part of their pathogenetic mechanisms.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Endopeptidases , Histona Desacetilase 1 , Imunidade Inata , Complexo de Endopeptidases do Proteassoma , Fator de Transcrição Sp1 , Proteínas Virais , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/metabolismo , Fator Regulador 3 de Interferon , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição Sp1/metabolismo , Suínos/virologia , Proteínas do Core Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ubiquitinas/metabolismo , Citocinas/metabolismo , Vírus da Diarreia Epidêmica Suína/imunologia , Vírus da Diarreia Epidêmica Suína/metabolismo , Domínios Proteicos
2.
J Virol ; 96(14): e0043822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758667

RESUMO

In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Síndrome da Liberação de Citocina , Regiões 3' não Traduzidas/genética , Imunidade Adaptativa/genética , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/patologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/patogenicidade , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Citocinas , Imunidade Inata/genética , Interferon-alfa/imunologia , Interleucina-12/imunologia , Ribonucleases/genética , Ribonucleases/metabolismo , Suínos , Vacinas Virais , Virulência/genética
3.
Virulence ; 12(1): 2037-2049, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34339338

RESUMO

The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Imunidade Humoral , Ribonucleases , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/transmissão , Vírus da Febre Suína Clássica/enzimologia , Infecção Persistente , Ribonucleases/genética , Suínos , Virulência
4.
Nucleic Acids Res ; 49(15): 8811-8821, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34365500

RESUMO

Viral RNA-dependent RNA polymerases (RdRPs) play central roles in the genome replication and transcription processes of RNA viruses. RdRPs initiate RNA synthesis either in primer-dependent or de novo mechanism, with the latter often assisted by a 'priming element' (PE) within the RdRP thumb domain. However, RdRP PEs exhibit high-level structural diversity, making it difficult to reconcile their conserved function in de novo initiation. Here we determined a 3.1-Å crystal structure of the Flaviviridae classical swine fever virus (CSFV) RdRP with a relative complete PE. Structure-based mutagenesis in combination with enzymology data further highlights the importance of a glycine residue (G671) and the participation of residues 665-680 in RdRP initiation. When compared with other representative Flaviviridae RdRPs, CSFV RdRP PE is structurally distinct but consistent in terminal initiation preference. Taken together, our work suggests that a conformational change in CSFV RdRP PE is necessary to fulfill de novo initiation, and similar 'induced-fit' mechanisms may be commonly taken by PE-containing de novo viral RdRPs.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , RNA Polimerase Dependente de RNA/química , Iniciação da Transcrição Genética , Proteínas Virais/química , Cristalografia por Raios X , Flaviviridae/enzimologia , Modelos Moleculares , Mutação , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 46(20): 10840-10854, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30239956

RESUMO

Typically not assisted by proofreading, the RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses may need to independently control its fidelity to fulfill virus viability and fitness. However, the precise mechanism by which the RdRP maintains its optimal fidelity level remains largely elusive. By solving 2.1-2.5 Å resolution crystal structures of the classical swine fever virus (CSFV) NS5B, an RdRP with a unique naturally fused N-terminal domain (NTD), we identified high-resolution intra-molecular interactions between the NTD and the RdRP palm domain. In order to dissect possible regulatory functions of NTD, we designed mutations at residues Y471 and E472 to perturb key interactions at the NTD-RdRP interface. When crystallized, some of these NS5B interface mutants maintained the interface, while the others adopted an 'open' conformation that no longer retained the intra-molecular interactions. Data from multiple in vitro RdRP assays indicated that the perturbation of the NTD-RdRP interactions clearly reduced the fidelity level of the RNA synthesis, while the processivity of the NS5B elongation complex was not affected. Collectively, our work demonstrates an explicit and unique mode of polymerase fidelity modulation and provides a vivid example of co-evolution in multi-domain enzymes.


Assuntos
Vírus da Febre Suína Clássica/genética , Instabilidade Genômica/genética , Domínios e Motivos de Interação entre Proteínas , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/metabolismo , Cristalografia por Raios X , Genoma Viral/genética , Modelos Moleculares , Conformação Molecular , Domínios e Motivos de Interação entre Proteínas/genética , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720518

RESUMO

Classical swine fever virus (CSFV) is the cause of classical swine fever (CSF). Nonstructural protein 5B (NS5B) is an RNA-dependent RNA polymerase (RdRp) that is a key enzyme initiating viral RNA replication by a de novo mechanism. It is also an attractive target for the development of anti-CSFV drugs. To gain a better understanding of the mechanism of CSFV RNA synthesis, here, we solved the first crystal structure of CSFV NS5B. Our studies show that the CSFV NS5B RdRp contains the characteristic finger, palm, and thumb domains, as well as a unique N-terminal domain (NTD) that has never been observed. Mutagenesis studies on NS5B validated the importance of the NTD in the catalytic activity of this novel RNA-dependent RNA polymerase. Moreover, our results shed light on CSFV infection.IMPORTANCE Pigs are important domesticated animals. However, a highly contagious viral disease named classical swine fever (CSF) causes devastating economic losses. Classical swine fever virus (CSFV), the primary cause of CSF, is a positive-sense single-stranded RNA virus belonging to the genus Pestivirus, family Flaviviridae Genome replication of CSFV depends on an RNA-dependent RNA polymerase (RdRp) known as NS5B. However, the structure of CSFV NS5B has never been reported, and the mechanism of CSFV replication is poorly understood. Here, we solve the first crystal structure of CSFV NS5B and analyze the functions of the characteristic finger, palm, and thumb domains. Additionally, our structure revealed the presence of a novel N-terminal domain (NTD). Biochemical studies demonstrated that the NTD of CSFV NS5B is very important for RdRp activity. Collectively, our studies provide a structural basis for future rational design of anti-CSFV drugs, which is critically important, as no effective anti-CSFV drugs have been developed.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Conformação Proteica , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , RNA Polimerase Dependente de RNA/química , Homologia de Sequência , Suínos , Proteínas não Estruturais Virais/metabolismo
7.
J Virol ; 90(17): 7740-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334592

RESUMO

UNLABELLED: Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/ß) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein N(pro) that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant N(pro) and IRF3 proteins and show that N(pro) interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between N(pro) and IRF3 is not dependent on the activation state of IRF3, since N(pro) binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the N(pro)-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE: The pestivirus N-terminal protease, N(pro), is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the N(pro) interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that N(pro) targets for degradation, is largely unknown. We show that classical swine fever virus N(pro) and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with N(pro) Additionally, N(pro) interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that N(pro) is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/fisiologia , Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/metabolismo , Proteínas Virais/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
8.
Can J Microbiol ; 61(12): 948-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485449

RESUMO

Classical swine fever virus (CSFV) is the pathogen that causes a highly infectious disease of pigs and has led to disastrous losses to pig farms and related industries. The RNA-dependent RNA polymerase (RdRp) NS5B is a central component of the replicase complex (RC) in some single-stranded RNA viruses, including CSFV. On the basis of genetic variation, the CSFV RdRps could be clearly divided into 2 major groups and a minor group, which is consistent with the phylogenetic relationships and virulence diversification of the CSFV isolates. However, the adaptive signature underlying such an evolutionary profile of the polymerase and the virus is still an interesting open question. We analyzed the evolutionary trajectory of the CSFV RdRps over different timescales to evaluate the potential adaptation. We found that adaptive selection has driven the diversification of the RdRps between, but not within, CSFV major groups. Further, the major adaptive divergence-related sites are located in the surfaces relevant to the interaction with other component(s) of RC and the entrance and exit of the template-binding channel. These results might shed some light on the nature of the RdRp in virulence diversification of CSFV groups.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Peste Suína Clássica/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Vírus da Febre Suína Clássica/química , Vírus da Febre Suína Clássica/classificação , Vírus da Febre Suína Clássica/genética , Variação Genética , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Suínos , Proteínas Virais/química , Proteínas Virais/metabolismo
9.
Virus Res ; 189: 67-74, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24815879

RESUMO

Real-time fluorescence imaging of viral proteins in living cells is a valuable means to study virus-host interactions, and tetracysteine (TC)-biarsenical technology has been used in several viruses but not in classical swine fever virus (CSFV). Here, we generated CSFV mutants vSMTC385 or vSMTC412 bearing the small TC tag (CCPGCC) in the N-terminal region of the N(pro) protein. The mutants showed growth characteristics indistinguishable from that of the wild-type virus, and retained similar N(pro) subcellular localization to that of the parent virus. Furthermore, labeling with membrane-permeable biarsenical dye resulted in the fluorescent N(pro) protein in the context of virus infection. Finally, we showed that N(pro) was localized in the cytoplasm of CSFV-infected cells at 27 h post-infection (hpi) and present in the nucleus at 48 hpi, and the nuclear import and export was clearly observed from 36.5 to 37 hpi. Interestingly, our results demonstrated that N(pro) transported across the nuclear pores by passive diffusion, which might be prevented by exogenous interferon regulatory factor 3 interacting with N(pro). Taken together, biarsenical labeling allows real-time visualization of the nucleus import and export of the fluorescent N(pro) protein in CSFV-infected living cells.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Endopeptidases/análise , Imagem Óptica/métodos , Proteínas Virais/análise , Animais , Linhagem Celular , Núcleo Celular/química , Citoplasma/química , Suínos
10.
Virus Genes ; 49(1): 106-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24824302

RESUMO

Study of the classical swine fever virus (CSFV) replication is challenging because it is a BSL-3-Ag pathogen that requires specialized facilities. We developed a cell-based assay in human embryonic kidney 293T cells that can quantify the activities of NS5B, the CSFV RNA-dependent RNA polymerase. The 5BR assay uses transiently-expressed CSFV NS5B to produce RNAs that activate the RIG-I-mediated signaling pathway to result in reporter protein production. Upon co-expression of the CSFV core protein, we observed enhancement of the CSFV RdRp activity. The CSFV core and NS5B proteins could co-immunoprecipitate with each other and co-localize in cells, when visualized by confocal microscopy. Analyses of combinations of RdRps and capsid proteins from different viruses demonstrated that the CSFV core could enhance the CSFV NS5B activity in a virus species-specific manner. Studies of truncated versions of CSFV core demonstrated that the first 30 residues of core protein are dispensable for interaction with the CSFV NS5B. Purified core protein could enhance RNA synthesis by the purified NS5B in vitro, with the increase being in the synthesis of the de novo-initiated RNA. These results demonstrate that the CSFV core protein can regulate the mechanism of RNA synthesis by the CSFV RdRp.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/metabolismo , RNA/biossíntese , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Humanos , Imunoprecipitação , Microscopia Confocal , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais
11.
Antiviral Res ; 106: 71-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24680957

RESUMO

2,6-Bis(benzimidazol-2-yl)pyridine (BBP/CSFA-0) was identified in a CPE-based screening as a selective inhibitor of the in vitro bovine viral diarrhea virus (BVDV) replication. The EC50-values for the inhibition of BVDV-induced cytopathic (CPE) effect, viral RNA synthesis and the production of infectious virus were 0.3±0.1µM, 0.05±0.01µM and 0.3±0.04µM, respectively. Furthermore, BBP/CSFA-0 inhibits the in vitro replication of the classical swine fever virus (CSFV) with an EC50 of 0.33±0.25µM. BBP/CSFA-0 proved in vitro inactive against the hepatitis C virus, that belongs like BVDV and CSFV to the family of Flaviviridae. Modification of the substituents on the two 1H-benzimidazole groups of BBP resulted in analogues equipotent in anti-BVDV activity (EC50=0.7±0.1µM), devoid of cytotoxicity (S.I.=142). BBP resistant BVDV was selected for and was found to carry the I261M mutation in the viral RNA-dependent RNA polymerase (RdRp). Likewise, BBP-resistant CSFV was selected for; this variant carries either an I261N or a P262A mutation in NS5B. Molecular modeling revealed that I261 and P262 are located in a small cavity near the fingertip domain of the pestivirus polymerase. BBP-resistant BVDV and CSFV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110 and LZ37) that are known to target the same region of the RdRp. BBP did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). BBP interacts likely with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110 and LZ37. This indicates that this region is a "hot spot" for inhibition of pestivirus replication.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Vírus da Febre Suína Clássica/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/toxicidade , Benzimidazóis/química , Benzimidazóis/isolamento & purificação , Benzimidazóis/toxicidade , Bovinos , Linhagem Celular , Vírus da Febre Suína Clássica/enzimologia , Vírus da Diarreia Viral Bovina Tipo 1/enzimologia , Farmacorresistência Viral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/toxicidade , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Modelos Moleculares , Mutação , Conformação Proteica , Piridinas/química , Piridinas/isolamento & purificação , Piridinas/toxicidade
12.
PLoS Pathog ; 9(10): e1003704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146623

RESUMO

Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro)) is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, N(pro) is no longer active as a protease. The released N(pro) suppresses the induction of the host's type-I interferon-α/ß (IFN-α/ß) response. N(pro) binds interferon regulatory factor-3 (IRF3), the key transcriptional activator of IFN-α/ß genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/ß response to pestivirus infection. Here we report the crystal structures of pestivirus N(pro). N(pro) is structurally distinct from other known cysteine proteases and has a novel "clam shell" fold consisting of a protease domain and a zinc-binding domain. The unique fold of N(pro) allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of N(pro) involved in targeting IRF3 for proteasomal degradation provides insight into the nature of N(pro)'s interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of N(pro), and its role in subversion of host immune response.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Cisteína Proteases/química , Interferon Tipo I , Dobramento de Proteína , Animais , Catálise , Domínio Catalítico , Vírus da Febre Suína Clássica/genética , Cristalografia por Raios X , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Relação Estrutura-Atividade , Suínos
13.
J Virol ; 87(21): 11872-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986594

RESUMO

Classical swine fever virus (CSFV) is a positive-stranded RNA virus belonging to the genus Pestivirus within the Flaviviridae family. Pivotal for processing of a large portion of the viral polyprotein is a serine protease activity within nonstructural protein 3 (NS3) that also harbors helicase and NTPase activities essential for RNA replication. In CSFV-infected cells, NS3 appears as two forms, a fully processed NS3 of 80 kDa and the precursor molecule NS2-3 of 120 kDa. Here we report the identification and mapping of additional autocatalytic intramolecular cleavages. One cleavable peptide bond occurs between Leu1781 and Met1782, giving rise to a helicase subunit of 55 kDa and, depending on the substrate, a NS2-3 fragment of 78 kDa (NS2-3p) or a NS3 protease subunit of 26 kDa (NS3p). In trans-cleavage assays using NS4-5 as a substrate, NS3p acts as a fully functional protease that is able to process the polyprotein. NS3p comprises the minimal essential protease, as deletion of Leu1781 results in inactivation. A second intramolecular cleavage was mapped to the Leu1748/Lys1749 peptide bond that yields a proteolytically inactive NS3 fragment. Deletion of either of the cleavage site residues resulted in a loss of RNA infectivity, indicating the functional importance of amino acid identity at the respective positions. Our data suggest that internal cleavage within the NS3 moiety is a common process that further extends the functional repertoires of the multifunctional NS2-3 or NS3 and represents another level of the complex polyprotein processing of Flaviviridae.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/fisiologia , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Análise Mutacional de DNA , Hidrólise , Processamento de Proteína Pós-Traducional , Serina Endopeptidases/metabolismo
14.
Antiviral Res ; 98(2): 266-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23511203

RESUMO

Classical swine fever (CSF) is one of most important diseases of the Suidea with severe social economic consequences in case of outbreaks. Antivirals have been demonstrated, in recent publications, to be an interesting alternative method of fighting the disease. However, classical swine fever virus is an RNA virus which presents a challenge as intra-host variation and the error prone RNA dependent RNA polymerase (RdRp) could lead to the emergence/selection of resistant variants hampering further treatment. Therefore, it was the purpose of this study to investigate the intra-host variation of the RdRp gene, targeted by antivirals, in respect to antiviral treatment. Using the non-unique nucleotide changes, a limited intra-host variation was found in the wild type virus with 2 silent and 2 non-synonymous sites. This number shifted significantly when an antiviral resistant variant was analyzed. In total 22nt changes were found resulting in 14 amino acid changes whereby each genome copy contained at least 2 amino-acid changes in the RdRp. Interestingly, the frequency of the mutations situated in close proximity to a region involved in antiviral resistance in CSFV and bovine viral diarrhea virus (BVDV) was elevated compared to the other mutations. None of the identified mutations in the resistant variant and which could potentially result in antiviral resistance was present in the wild type virus as a non-unique mutation. In view of the spectrum of mutations identified in the resistance associated region and that none of the resistance associated mutations reported for another strain of classical swine fever for the same antiviral were observed in the study, it can be suggested that multiple mutations confer resistance to some degree. Although the followed classical approach allowed the analysis the RdRp as a whole, the contribution of unique mutations to the intra-host variation could not be completely resolved. There was a significant difference in de number of unique mutations found between: 1/wild type virus and the antiviral resistant variant and 2/between both and the number to be expected from the error rate of the RT-PCR process. This indicates that the some of the unique mutations contributed to the intra-host variation and that the antiviral pressure also shifted this pattern. This is important as one of the non-synonymous mutations found in the resistant variant and which was located in the antiviral resistance associated region, was present in the wild type virus as a unique mutation. The findings presented in this study not only show the importance of intra-host variation analysis but also warrants further research certainly in view of the potential inclusion of antivirals in a control/eradication strategy.


Assuntos
Antivirais/farmacologia , Vírus da Febre Suína Clássica/efeitos dos fármacos , Vírus da Febre Suína Clássica/enzimologia , Peste Suína Clássica/virologia , Variação Genética , Imidazóis/farmacologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Peste Suína Clássica/tratamento farmacológico , Vírus da Febre Suína Clássica/genética , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Suínos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
15.
Virus Res ; 171(1): 257-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23220337

RESUMO

To investigate whether cytoplasmic RNA helicase A (RHA) influences the expression and replication of classical swine fever virus (CSFV), an siRNA molecule targeted to RHA was transfected into PK-15 cells. The siRNA was found to reduce cytoplasmic RHA. In CSFV subgenomic replicon transfected cells, incubation with the siRNAs negatively impacted viral NS3 and RNA production. In the CSFV infected cells, treatment with the siRNA resulted in a significant reduction of viral replication by 65-70%. Furthermore, affinity chromatography and UV-crosslinking assays revealed that RHA can bind the 5' and 3' terminal region of CSFV 3'-untranslated region (UTR), the 5' terminal region and domain III of CSFV 5' UTR. All these regions are important for viral replication and translation. These data showed that RHA is involved in the expression and replication of CSFV and might participate in modulation of RNA synthesis, replication and translation of CSFV by binding these regions.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/genética , Regulação Viral da Expressão Gênica , RNA Helicases/genética , Regiões não Traduzidas , Replicação Viral , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Inativação Gênica , Conformação de Ácido Nucleico , RNA Helicases/metabolismo , Interferência de RNA , RNA Viral
16.
Virology ; 411(1): 41-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21236462

RESUMO

Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive-sense single-stranded RNA virus within the Pestivirus genus of the Flaviviridae family. Here, we have identified conserved sequence elements observed in nucleotide-binding motifs (NBM) that hydrolyze NTPs within the CSFV non-structural (NS) protein NS4B. Expressed NS4B protein hydrolyzes both ATP and GTP. Substitutions of critical residues within the identified NS4B NBM Walker A and B motifs significantly impair the ATPase and GTPase activities of expressed proteins. Similar mutations introduced into the genetic backbone of a full-length cDNA copy of CSFV strain Brescia rendered no infectious viruses or viruses with impaired replication capabilities, suggesting that this NTPase activity is critical for the CSFV cycle. Recovered mutant viruses retained a virulent phenotype, as parental strain Brescia, in infected swine. These results have important implications for developing novel antiviral strategies against CSFV infection.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Nucleosídeo-Trifosfatase/metabolismo , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação , Domínio Catalítico , Peste Suína Clássica/patologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/patogenicidade , Sequência Conservada , Guanosina Trifosfato/metabolismo , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleosídeo-Trifosfatase/genética , Alinhamento de Sequência , Suínos , Carga Viral , Proteínas não Estruturais Virais/genética , Viremia , Virulência
17.
Virus Res ; 148(1-2): 17-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19951725

RESUMO

NS3 of pestiviruses contains a protease domain and a RNA helicase/NTPase domain. Contradictory results have been reported regarding NS3 in RNA synthesis. To investigate the effect of NS3 on classical swine fever virus (CSFV) NS5B RNA-dependent RNA polymerase activity (RdRp) activity and NS3-NS5B interaction, RdRp reactions, GST-pull-down assays and co-immunoprecipitation analyses containing NS5B and either of NS3 protein and the different truncated NS3 mutants were performed, respectively. We found that NS3 stimulated NS5B RdRp activity in a dose-dependent manner by binding to NS5 through a NS3 protease domain. Furthermore, mapping important regions of the NS3 protease domain was carried out by deletion mutagenesis, associated with RdRp reactions, GST-pull-down assays and co-immunoprecipitation analyses. Results showed that stimulation of CSFV NS5B RdRp activity was obtained by NS3 binding to NS5B through a 31-amino acid fragment at the N-terminal end of NS3 protease domain, which mediated a specific NS3-NS5B interaction.


Assuntos
Vírus da Febre Suína Clássica/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/química , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/genética , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Suínos , Proteínas Virais/química , Proteínas Virais/genética
18.
Virus Res ; 141(1): 63-70, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185595

RESUMO

Classical swine fever virus (CSFV) nonstructural protein 3 (NS3) is believed to possess three enzyme activities that are likely to be essential for virus replication: a serine protease located in the N-terminus and NTPase as well as helicase activities located in the C-terminus. In this report, we expressed NS3 helicase domain (NS3h) in E. coli and characterized its helicase activity. The NS3h helicase activity was dependent on the presence of NTP and divalent cations, with a preference for ATP and Mn(2+), and required the substrates possessing a 3' un-base-paired region on the RNA template strand. The NS3h helicase activity was proportional to increasing lengths of the 3' un-base-paired regions up to 16 nucleotides of the RNA substrates. We also investigated the modulation of NS3 NTPase/helicase activities by NS3 protease domain and NS5B, an RNA-dependent RNA polymerase (RdRp). Our data showed that the NS3 protease domain enhanced the helicase activity of NS3 but had no effect on its NTPase activity. For the truncated NS3 (helicase domain, NS3h), both NTPase and helicase activities were up-regulated by NS5B. However, for the full-length NS3 (NS3FL), the NTPase activity, but not the helicase activity, was stimulated by NS5B. Maltose-binding protein (MBP) pull-down as well as enzyme-linked immunosorbent assays confirmed the specific interaction between NS3 and NS5B.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , RNA Helicases/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus da Febre Suína Clássica/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ligação Proteica , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
19.
Vopr Virusol ; 53(5): 36-40, 2008.
Artigo em Russo | MEDLINE | ID: mdl-19069792

RESUMO

Twenty-eight hybridomas producing monoclonal antibodies (MAbs) to proteins of classical swine virus (CSFV) were obtained by fusion of AS2/0 murine myeloma cells with splenocytes of BALB/c mice. The recombinant E2 glycoprotein of CSFV and the gradient-purified CSFV strain Shimen were used as an antigen for immunization. Twenty-four hybridomas produced MAbs of class IgG and four hybridomas did MAbs of class IgM. All MAbs were specific for E2 protein of CSFV. Competitive enzyme immunoassay showed that MAbs detected 8 epitopes on protein E2.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Vírus da Febre Suína Clássica/imunologia , Ribonucleases/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Vírus da Febre Suína Clássica/enzimologia , Epitopos/genética , Epitopos/imunologia , Feminino , Hibridomas , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/genética
20.
In Silico Biol ; 8(1): 21-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18430987

RESUMO

The NS5B protein of classical swine fever virus (CSFV) is an important enzyme bearing a unique RNA-dependent RNA polymerase (RdRp) activity. The RdRp plays a crucial role in the viral replication cycle and in forming a replicase complex. However, the initiating synthesis mechanism of the CSFV RNA polymerase is unclearly described at present. Our aim is to reveal the RdRp-GTP docking sites and the effective modules of GTP initially bound to the polymerase in starting initiation of replication according to a well predicted CSFV RdRp model. Based on some known crystal structures of RNA polymerase, computational methods were used to establish the model of a CSFV RdRp. An analogous mechanism of CSFV RNA polymerase in de novo initiation was subsequently represented through docking a GTP into the structure model. The unique GTP binding pocket of the polymerase was pointed out: five residues E227, S408, R427, K435, and R439 involved in steady hydrogen bonds and two residues C407 and L232 involved in hydrophobic contact with the GTP. From a genetic evolutionary point of view, three residues C407, S408 and R427 have been suggested to be of particular importance by analysis of residue conservation. It is suggested that these crucial residues should have very significant function in the de novo initiation of the rigorous CSFV polymerase model, which can lead us to design experiments for studying the mechanism of viral replication and develop valid anti-viral drugs.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Guanosina Trifosfato/metabolismo , Modelos Moleculares , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Vírus da Febre Suína Clássica/genética , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Homologia de Sequência de Aminoácidos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...