Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.489
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000126

RESUMO

Chronic Hepatitis B virus (CHB) infection is a global health challenge, causing damage ranging from hepatitis to cirrhosis and hepatocellular carcinoma. In our study, single-cell RNA sequencing (scRNA-seq) analysis was performed in livers from mice models with chronic inflammation induced by CHB infection and we found that endothelial cells (ECs) exhibited the largest number of differentially expressed genes (DEGs) among all ten cell types. NF-κB signaling was activated in ECs to induce cell dysfunction and subsequent hepatic inflammation, which might be mediated by the interaction of macrophage-derived and cholangiocyte-derived VISFATIN/Nampt signaling. Moreover, we divided ECs into three subclusters, including periportal ECs (EC_Z1), midzonal ECs (EC_Z2), and pericentral ECs (EC_Z3) according to hepatic zonation. Functional analysis suggested that pericentral ECs and midzonal ECs, instead of periportal ECs, were more vulnerable to HBV infection, as the VISFATIN/Nampt- NF-κB axis was mainly altered in these two subpopulations. Interestingly, pericentral ECs showed increasing communication with macrophages and cholangiocytes via the Nampt-Insr and Nampt-Itga5/Itgb1 axis upon CHB infection, which contribute to angiogenesis and vascular capillarization. Additionally, ECs, especially pericentral ECs, showed a close connection with nature killer (NK) cells and T cells via the Cxcl6-Cxcr6 axis, which is involved in shaping the microenvironment in CHB mice livers. Thus, our study described the heterogeneity and functional alterations of three subclusters in ECs. We revealed the potential role of VISFATIN/Nampt signaling in modulating ECs characteristics and related hepatic inflammation, and EC-derived chemokine Cxcl16 in shaping NK and T cell recruitment, providing key insights into the multifunctionality of ECs in CHB-associated pathologies.


Assuntos
Células Endoteliais , Hepatite B Crônica , Análise de Célula Única , Animais , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Análise de Sequência de RNA , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Transdução de Sinais , Fígado/metabolismo , Fígado/virologia , Fígado/patologia , NF-kappa B/metabolismo , Masculino , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
2.
Viruses ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38932118

RESUMO

A number of research studies, including ours, have spotlighted exosomes as critical facilitators of viral dissemination. While hepatitis B virus (HBV) transmission through exosomes has been studied, the focus on its satellite virus, the hepatitis delta virus (HDV), has been unexplored in this context. HDV, although being a defective virus, can replicate its genome autonomously within hepatocytes, independently of HBV. Investigations on Huh7 cells revealed an intriguing phenomenon: the HDV proteins, S-HDAg and L-HDAg, are transmitted between cells without a complete viral structure. Detailed analysis further revealed that the expression of these proteins not only bolstered exosome secretion but also ensured their enrichment within these vesicles. Our experimental approach utilized transfection of various plasmids to examine the role of HDV RNA and proteins in the process. One salient finding was the differential propagation of the HDV proteins S-HDAg and L-HDAg, suggesting intricate molecular mechanisms behind their transmission. Notably, the purity of our exosome preparations was monitored using markers such as TSG101 and CD81. Importantly, these exosomes were found to carry both HDV RNA and proteins, highlighting their role in HDV dissemination. This novel study underscores the role of exosomes in mediating the transmission of HDV components between hepatocytes independent of HBV. These revelations about the exosomal pathway of HDV transmission provide a foundation for the development of innovative therapeutic strategies against HDV infections.


Assuntos
Exossomos , Vírus da Hepatite B , Vírus Delta da Hepatite , Hepatócitos , Replicação Viral , Exossomos/metabolismo , Exossomos/virologia , Vírus Delta da Hepatite/fisiologia , Vírus Delta da Hepatite/genética , Hepatócitos/virologia , Humanos , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , RNA Viral/metabolismo , RNA Viral/genética , Hepatite D/virologia , Hepatite D/transmissão , Linhagem Celular , Hepatite B/virologia , Hepatite B/transmissão , Antígenos da Hepatite delta/metabolismo
3.
Viruses ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38932152

RESUMO

The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. The application of bioinformatics on whole sequence databases lead to discoveries of HDV-like agents (DLA) and shed light on HDV's evolution, expanding our understanding of HDV biology. DLA were identified in heterogeneous groups of vertebrates and invertebrates, highlighting that the evolution of HDV, represented by eight distinct genotypes, is broader and more complex than previously foreseen. In this study, we focused on the characterization of three mammalian DLA discovered in woodchuck (Marmota monax), white-tailed deer (Odocoileus virginianus), and lesser dog-like bat (Peropteryx macrotis) in terms of replication, cell-type permissiveness, and spreading pathways. We generated replication-competent constructs expressing 1.1-fold over-length antigenomic RNA of each DLA. Replication was initiated by transfecting the cDNAs into human (HuH7, HeLa, HEK293T, A549) and non-human (Vero E6, CHO, PaKi, LMH) cell lines. Upon transfection and replication establishment, none of the DLA expressed a large delta antigen. A cell division-mediated viral amplification assay demonstrated the capability of non-human DLA to replicate and propagate in hepatic and non-hepatic tissues, without the requirement of envelope proteins from a helper virus. Remarkably L-HDAg but not S-HDAg from HDV can artificially mediate envelopment of WoDV and DeDV ribonucleoproteins (RNPs) by HBsAg to form infectious particles, as demonstrated by co-transfection of HuH7 cells with the respective DLA expression constructs and a plasmid encoding HBV envelope proteins. These chimeric viruses are sensitive to HDV entry inhibitors and allow synchronized infections for comparative replication studies. Our results provide a more detailed understanding of the molecular biology, evolution, and virus-host interaction of this unique group of animal viroid-like agents in relation to HDV.


Assuntos
Vírus da Hepatite B , Vírus Delta da Hepatite , Marmota , Replicação Viral , Animais , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/fisiologia , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Marmota/virologia , Divisão Celular , Quirópteros/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Genótipo , Células HEK293 , Hepatite D/virologia , RNA Viral/genética , RNA Viral/metabolismo
4.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932182

RESUMO

Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65's antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins' capacity to inhibit HBV transcription and highlight TRIM65's pivotal role in this process.


Assuntos
Vírus da Hepatite B , Transcrição Gênica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Replicação Viral , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Células Hep G2 , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Hepatite B/virologia , Hepatite B/genética , Hepatite B/imunologia , Regiões Promotoras Genéticas , RNA Viral/genética , RNA Viral/metabolismo
5.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932263

RESUMO

Illicit drug and alcohol abuse have significant negative consequences for individuals who inject drugs/use drugs (PWID/UDs), including decreased immune system function and increased viral pathogenesis. PWID/UDs are at high risk of contracting or transmitting viral illnesses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). In South Africa, a dangerous drug-taking method known as "Bluetoothing" has emerged among nyaope users, whereby the users of this drug, after injecting, withdraw blood from their veins and then reinject it into another user. Hence, the transmission of blood-borne viruses (BBVs) is exacerbated by this "Bluetooth" practice among nyaope users. Moreover, several substances of abuse promote HIV, HBV, and HCV replication. With a specific focus on the nyaope drug, viral replication, and transmission, we address the important influence of abused addictive substances and polysubstance use in this review.


Assuntos
Hepatite C , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtornos Relacionados ao Uso de Substâncias/complicações , África do Sul/epidemiologia , Hepatite C/virologia , Hepatite C/transmissão , Hepatite B/virologia , Hepatite B/transmissão , Infecções por HIV/transmissão , Infecções por HIV/virologia , Replicação Viral/efeitos dos fármacos , Drogas Ilícitas/efeitos adversos , Vírus da Hepatite B/fisiologia , Viroses/transmissão , Infecções Transmitidas por Sangue , Hepacivirus , Abuso de Substâncias por Via Intravenosa/complicações
6.
Viruses ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932267

RESUMO

Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.


Assuntos
Carcinogênese , Genômica , HIV-1 , Vírus da Hepatite B , Sequenciamento de Nucleotídeos em Larga Escala , Integração Viral , Fluxo de Trabalho , Humanos , Integração Viral/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , HIV-1/genética , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Carcinogênese/genética , Genômica/métodos , Linhagem Celular Tumoral , Papillomaviridae/genética
7.
PLoS One ; 19(6): e0304375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935766

RESUMO

Hepatitis B virus (HBV) infection is a global public health issue. We offer a comprehensive analysis of the dynamics of HBV, which can be successfully controlled with vaccine and treatment. Hepatitis B virus (HBV) causes a significantly more severe and protracted disease compared to hepatitis A. While it initially presents as an acute disease, in approximately 5 to 10% of cases, it can develop into a chronic disease that causes permanent damage to the liver. The hepatitis B virus can remain active outside the body for at least seven days. If the virus penetrates an individual's body without immunization, it may still result in infection. Upon exposure to HBV, the symptoms often last for a duration ranging from 10 days to 6 months. In this study, we developed a new model for Hepatitis B Virus (HBV) that includes asymptomatic carriers, vaccination, and treatment classes to gain a comprehensive knowledge of HBV dynamics. The basic reproduction number [Formula: see text] is calculated to identify future recurrence. The local and global stabilities of the proposed model are evaluated for values of [Formula: see text] that are both below and above 1. The Lyapunov function is employed to ensure the global stability of the HBV model. Further, the existence and uniqueness of the proposed model are demonstrated. To look at the solution of the proposed model graphically, we used a useful numerical strategy, such as the non-standard finite difference method, to obtain more thorough numerical findings for the parameters that have a significant impact on disease elimination. In addition, the study of treatment class in the population, we may assess the effectiveness of alternative medicines to treat infected populations can be determined. Numerical simulations and graphical representations are employed to illustrate the implications of our theoretical conclusions.


Assuntos
Simulação por Computador , Vírus da Hepatite B , Hepatite B , Humanos , Hepatite B/epidemiologia , Hepatite B/prevenção & controle , Vírus da Hepatite B/fisiologia , Epidemias/prevenção & controle , Vacinas contra Hepatite B/uso terapêutico , Vacinas contra Hepatite B/administração & dosagem , Número Básico de Reprodução , Vacinação
8.
Discov Med ; 36(185): 1169-1179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926103

RESUMO

BACKGROUND: In recent years, a gene-editing technology known as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has been developed and is progressively advancing into clinical trials. While current antiviral therapies are unable to eliminate the Hepatitis B virus (HBV), it stands as a prime target for the CRISPR/Cas9 technology. The objective of this study was to enhance the efficacy of CRISPR/Cas9 in suppressing HBV replication, lowering HBsAg and HBeAg levels, and eliminating covalently closed circular DNA (cccDNA). METHODS: To enhance the anti-HBV effectiveness of CRISPR/Cas9, our study delved into a dual-guide RNA (gRNA) strategy. After evaluating the antiviral activities of multiple gRNAs that effectively impeded HBV replication, we identified three specific gRNAs-namely 10, 4, and 21. These gRNAs were selected for their targeting of distinct yet conserved regions within the HBV genome. RESULTS: In HBV-stable cell lines, namely HepAD38, and HBV infection models of HepG2-NTCP cells, our investigation revealed that the co-application of gRNA-10 with either gRNA-4 or gRNA-21 within the CRISPR/Cas9 system demonstrated heightened efficacy in impeding HBV replication, reducing the levels of HBsAg, HBeAg, and cccDNA levels, along with a more pronounced promotion of HBsAg clearance when compared to the use of a single gRNA. CONCLUSIONS: The CRISPR/Cas9 system employing dual gRNAs has proven highly effective in both suppressing HBV replication and facilitating HBsAg clearance. This promising outcome suggests that it holds potential to emerge as a novel approach for achieving the functional cure of patients with HBV infection.


Assuntos
Sistemas CRISPR-Cas , Vírus da Hepatite B , RNA Guia de Sistemas CRISPR-Cas , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Células Hep G2 , Edição de Genes/métodos , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Antivirais/farmacologia , Hepatite B/virologia , Hepatite B/genética , Hepatite B/terapia
9.
Zhonghua Gan Zang Bing Za Zhi ; 32(5): 474-480, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38858198

RESUMO

Chronic hepatitis B virus (HBV) infection is one of the major public health issues of ongoing global concern. Due to inadequate understanding of the HBV life cycle, there is a lack of effective drugs to cure chronic hepatitis B. During HBV replication, covalently closed circular DNA (cccDNA) serves as the template for viral replication and can be transcribed to produce five viral RNAs of 3.5, 2.4, 2.1 kb and 0.7 kb in length, which are translated to produce HBeAg, core protein, polymerase (P) protein, HBsAg and HBx proteins, respectively. Among them, the 3.5 kb pregenomic RNA (pgRNA) is also the template for viral reverse transcription. Polymerase protein recognizes and binds to the capsid assembly signal on the pgRNA to initiate capsid assembly and reverse transcription. Recent studies have revealed that the processes of splicing, nuclear export, stability, translation, and pgRNA encapsidation of HBV RNAs are regulated by a post-transcriptional regulatory network within the host cell and depend on unique post-transcriptional regulatory elements in the HBV RNA structure. The aim of this review is to overview the post-transcriptional regulatory mechanisms of HBV RNA and their applications in the study of HBV antiviral therapeutics, with the aim of providing new ideas for the development of new drugs targeting HBV RNA.


Assuntos
Vírus da Hepatite B , RNA Viral , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , RNA Viral/metabolismo , Humanos , Antivirais/farmacologia , Regulação Viral da Expressão Gênica , Hepatite B Crônica/virologia , Hepatite B Crônica/tratamento farmacológico , Processamento Pós-Transcricional do RNA
10.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38928309

RESUMO

Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.


Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Espécies Reativas de Oxigênio , Transativadores , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Humanos , Proteína Supressora de Tumor p53/metabolismo , Vírus da Hepatite B/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Transativadores/genética , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linhagem Celular Tumoral
11.
Pol J Microbiol ; 73(2): 217-235, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905278

RESUMO

Interferon-alpha (IFN-α) is a first-line drug for treating chronic hepatitis B (CHB). Guanylate-binding protein 1 (GBP1) is one of the interferon-stimulating factors, which participates in the innate immunity of the host and plays an antiviral and antibacterial role. In this study, we explored how GBP1 is involved in IFN-α antiviral activity against HBV. Before being gathered, HepG2-NTCP and HepG2 2.15 cells were transfected with the wild-type hGBP1 plasmid or si-GBP1, respectively, and followed by stimulation with Peg-IFNα-2b. We systematically explored the role of GBP1 in regulating HBV infection in cell models. Additionally, we also examined GBP1 levels in CHB patients. GBP1 activity increased, and its half-life was prolonged after HBV infection. Overexpression of GBP1 inhibited the production of HBsAg and HBeAg, as well as HBs protein and HBV total RNA levels, whereas silencing of GBP1 inhibited its ability to block viral infections. Interestingly, overexpressing GBP1 co-treatment with Peg-IFNα-2b further increased the antiviral effect of IFN-α, while GBP1 silencing co-treatment with Peg-IFNα-2b partly restored its inhibitory effect on HBV. Mechanistically, GBP1 mediates the anti-HBV response of Peg-IFNα-2b by targeting HBs. Analysis of clinical samples revealed that GBP1 was elevated in CHB patients and increased with Peg-IFNα-2b treatment, while GBP1 showed good stability in the interferon response group. Our study demonstrates that GBP1 inhibits HBV replication and promotes HBsAg clearance. It is possible to achieve antiviral effects through the regulation of IFN-α induced immune responses in response to HBV.


Assuntos
Antivirais , Proteínas de Ligação ao GTP , Vírus da Hepatite B , Hepatite B Crônica , Interferon-alfa , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Antivirais/farmacologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/imunologia , Células Hep G2 , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatite B Crônica/imunologia , Masculino , Antígenos de Superfície da Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/metabolismo , Feminino , Adulto , Replicação Viral/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/imunologia , Hepatite B/tratamento farmacológico
12.
Eur J Med Res ; 29(1): 343, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902822

RESUMO

As a hepatotropic virus, hepatitis B virus (HBV) can establish a persistent chronic infection in the liver, termed, chronic hepatitis B (CHB), which causes a series of liver-related complications, including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCC with HBV infection has a significantly increased morbidity and mortality, whereas it could be preventable. The current goal of antiviral therapy for HBV infection is to decrease CHB-related morbidity and mortality, and achieve sustained suppression of virus replication, which is known as a functional or immunological cure. The natural history of chronic HBV infection includes four immune phases: the immune-tolerant phase, immune-active phase, inactive phase, and reactivation phase. However, many CHB patients do not fit into any of these defined phases and are regarded as indeterminate. A large proportion of indeterminate patients are only treated with dynamic monitoring rather than recommended antiviral therapy, mainly due to the lack of definite guidelines. However, many of these patients may gradually have significant liver histopathological changes during disease progression. Recent studies have focused on the prevalence, progression, and carcinogenicity of indeterminate CHB, and more attention has been given to the prevention, detection, and treatment for these patients. Herein, we discuss the latest understanding of the epidemiology, clinical characteristics, and therapeutic strategies of indeterminate CHB, to provide avenues for the management of these patients.


Assuntos
Antivirais , Vírus da Hepatite B , Hepatite B Crônica , Humanos , Hepatite B Crônica/epidemiologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/complicações , Antivirais/uso terapêutico , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/virologia , Cirrose Hepática/epidemiologia , Cirrose Hepática/virologia , Progressão da Doença
13.
PLoS One ; 19(6): e0305350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861553

RESUMO

All-trans retinoic acid (ATRA), recognized as the principal and most biologically potent metabolite of vitamin A, has been identified for its inhibitory effects on hepatitis B virus (HBV) replication. Nevertheless, the underlying mechanism remains elusive. The present study reveals that ATRA induces E6-associated protein (E6AP)-mediated proteasomal degradation of HBx to suppress HBV replication in human hepatoma cells in a p53-dependent pathway. For this effect, ATRA induced promoter hypomethylation of E6AP in the presence of HBx, which resulted in the upregulation of E6AP levels in HepG2 but not in Hep3B cells, emphasizing the p53-dependent nature of this effect. As a consequence, ATRA augmented the interaction between E6AP and HBx, resulting in substantial ubiquitination of HBx and consequent reduction in HBx protein levels in both the HBx overexpression system and the in vitro HBV replication model. Additionally, the knockdown of E6AP under ATRA treatment reduced the interaction between HBx and E6AP and decreased the ubiquitin-dependent proteasomal degradation of HBx, which prompted a recovery of HBV replication in the presence of ATRA, as confirmed by increased levels of intracellular HBV proteins and secreted HBV levels. This study not only contributes to the understanding of the complex interactions between ATRA, p53, E6AP, and HBx but also provides an academic basis for the clinical employment of ATRA in the treatment of HBV infection.


Assuntos
Vírus da Hepatite B , Complexo de Endopeptidases do Proteassoma , Transativadores , Tretinoína , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Humanos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transativadores/metabolismo , Transativadores/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/efeitos dos fármacos , Tretinoína/farmacologia , Tretinoína/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células Hep G2 , Regulação para Baixo/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Regiões Promotoras Genéticas , Metilação de DNA/efeitos dos fármacos , Linhagem Celular Tumoral
15.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830096

RESUMO

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Assuntos
Citidina , Vírus da Hepatite B , RNA Viral , Transcrição Reversa , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Humanos , Transcrição Reversa/genética , Metilação , Replicação Viral/genética , Epigênese Genética , Vírion/metabolismo , Vírion/genética , Transcriptoma
16.
J Virol ; 98(6): e0046824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780244

RESUMO

The antiviral role of the tripartite motif-containing (TRIM) protein family , a member of the E3-ubiquitin ligase family, has recently been actively studied. Hepatitis B virus (HBV) infection is a major contributor to liver diseases; however, the host factors regulated by cytokine-inducible TRIM21 to suppress HBV remain unclear. In this study, we showed the antiviral efficacy of TRIM21 against HBV in hepatoma cell lines, primary human hepatocytes isolated from patient liver tissues, and mouse model. Using TRIM21 knock-out cells, we confirmed that the antiviral effects of interferon-gamma, which suppress HBV replication, are diminished when TRIM21 is deficient. Northern blot analysis confirmed a reduction of HBV RNA levels by TRIM21. Using Luciferase reporter assay, we also discovered that TRIM21 decreases the activity of HBV enhancers, which play a crucial role in covalently closed circular DNA transcription. The participation of the RING domain and PRY-SPRY domain in the anti-HBV effect of TRIM21 was demonstrated through experiments using deletion mutants. We identified a novel interaction between TRIM21 and hepatocyte nuclear factor 4α (HNF4α) through co-immunoprecipitation assay. More specifically, ubiquitination assay revealed that TRIM21 promotes ubiquitin-mediated proteasomal degradation of HNF4α. HNF1α transcription is down-regulated as a result of the degradation of HNF4α, an activator for the HNF1α promoter. Therefore, the reduction of key HBV enhancer activators, HNF4α and HNF1α, by TRIM21 resulted in a decline in HBV transcription, ultimately leading to the inhibition of HBV replication.IMPORTANCEDespite extensive research efforts, a definitive cure for chronic hepatitis B remains elusive, emphasizing the persistent importance of this viral infection as a substantial public health concern. Although the risks associated with hepatitis B virus (HBV) infection are well known, host factors capable of suppressing HBV are largely uncharacterized. This study elucidates that tripartite motif-containing protein 21 (TRIM21) suppresses HBV transcription and consequently inhibits HBV replication by downregulating the hepatocyte nuclear factors, which are host factors associated with the HBV enhancers. Our findings demonstrate a novel anti-HBV mechanism of TRIM21 in interferon-gamma-induced anti-HBV activity. These findings may contribute to new strategies to block HBV.


Assuntos
Vírus da Hepatite B , Fator 4 Nuclear de Hepatócito , Hepatócitos , Interferon gama , Ribonucleoproteínas , Replicação Viral , Humanos , Vírus da Hepatite B/fisiologia , Animais , Camundongos , Interferon gama/farmacologia , Interferon gama/metabolismo , Hepatócitos/virologia , Hepatócitos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Hepatite B/virologia , Hepatite B/metabolismo , Células Hep G2 , Linhagem Celular Tumoral
17.
Antimicrob Agents Chemother ; 68(7): e0042024, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38780261

RESUMO

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Hepatócitos , Humanos , Hepatócitos/virologia , Hepatócitos/efeitos dos fármacos , Animais , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Camundongos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Proteínas do Core Viral/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Fígado/virologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Montagem de Vírus/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Microbiol Spectr ; 12(7): e0023924, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785430

RESUMO

Hepatitis B virus (HBV), a common blood transmission pathogen worldwide, can lead to viral hepatitis, cirrhosis, liver cancer, and other liver diseases. In particular, occult hepatitis B virus infection (OBI) may be caused by an immune response leading to suppressed virus replication. Gut microbiota can change the immunity status of the human body and, therefore, affect the replication of HBV. Thus, to identify whether there are differences in gut microbiota between HBV carriers and OBI carriers, we collected fecal samples from 18 HBV carriers, 24 OBI blood donors, and also 20 healthy blood donors as negative control. After 16S sequencing, we found that the abundance of Faecalibacterium was significantly reduced in samples from OBI blood donors compared with those from healthy blood donors. Compared with samples from HBV carriers, the samples from OBI blood donors had a significantly increased abundance of Subdoligranulum, which might stimulate immune activation, thus inhibiting HBV replication and contributing to the formation of occult infection. Our findings revealed the potential role of gut microbiota in the formation of OBI and further provided a novel strategy for the treatment of HBV infection.IMPORTANCEOccult hepatitis B virus infection (OBI) is a special form of hepatitis B virus infection with hepatitis B surface antigen (HBsAg) positive and hepatitis B virus (HBV) DNA negative. Gut microbiota may contribute to the immune response leading to suppressed virus replication and, thus, participates in the development of OBI. The study on gut microbiota of OBI blood donors provides novel data considerably advancing our understanding of the immune mechanism for the determination of occult hepatitis B virus infection, which is helpful for improving the strategy of the treatment of HBV infection.


Assuntos
Fezes , Microbioma Gastrointestinal , Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Masculino , Hepatite B/virologia , Hepatite B/microbiologia , Hepatite B/imunologia , Adulto , Feminino , Fezes/microbiologia , Fezes/virologia , Pessoa de Meia-Idade , Portador Sadio/microbiologia , Portador Sadio/virologia , DNA Viral/genética , Replicação Viral , Antígenos de Superfície da Hepatite B/sangue , RNA Ribossômico 16S/genética , Adulto Jovem , Doadores de Sangue , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética
19.
Biochemistry ; 63(12): 1543-1552, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38787909

RESUMO

Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.


Assuntos
Capsídeo , Guanidina , Vírus da Hepatite B , Guanidina/química , Guanidina/farmacologia , Vírus da Hepatite B/química , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/efeitos dos fármacos , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Espalhamento a Baixo Ângulo , Multimerização Proteica , Modelos Moleculares , Montagem de Vírus/efeitos dos fármacos , Difração de Raios X
20.
Int Immunopharmacol ; 134: 112219, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733823

RESUMO

BACKGROUNDS & AIMS: Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS: Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS: As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION: The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.


Assuntos
Antivirais , Vírus da Hepatite B , Hepcidinas , Interferon-alfa , Janus Quinase 2 , Macrófagos , Fator de Transcrição STAT3 , Hepcidinas/metabolismo , Hepcidinas/genética , Animais , Humanos , Interferon-alfa/farmacologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Hep G2 , Transdução de Sinais/efeitos dos fármacos , Interleucina-6/metabolismo , Células THP-1 , Camundongos Endogâmicos C57BL , Replicação Viral/efeitos dos fármacos , Masculino , Hepatite B Crônica/imunologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Modelos Animais de Doenças , Hepatite B/imunologia , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...