Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Zoonoses Public Health ; 71(3): 314-323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362732

RESUMO

AIMS: Outbreaks of avian influenza in poultry farms are currently increasing in frequency, with devastating consequences for animal welfare, farmers and supply chains. Some studies have documented the direct spread of the avian influenza virus between farms. Prevention of spread between farms relies on biosecurity surveillance and control measures. However, the evolution of an outbreak on a farm might vary depending on the virus strain and poultry species involved; this would have important implications for surveillance systems, epidemiological investigations and control measures. METHODS AND RESULTS: In this study, we utilized existing parameter estimates from the literature to evaluate the predicted course of an epidemic in a standard poultry flock with 10,000 birds. We used a stochastic SEIR simulation model to simulate outbreaks in different species and with different virus subtypes. The simulations predicted large differences in the duration and severity of outbreaks, depending on the virus subtypes. For both turkeys and chickens, outbreaks with HPAI were of shorter duration than outbreaks with LPAI. In outbreaks involving the infection of chickens with different virus subtypes, the shortest epidemic involved H7N7 and HPAIV H5N1 (median duration of 9 and 17 days, respectively) and the longest involved H5N2 (median duration of 68 days). The most severe outbreaks (number of chickens infected) were predicted for H5N1, H7N1 and H7N3 virus subtypes, and the least severe for H5N2 and H7N7, in which outbreaks for the latter subtype were predicted to develop most slowly. CONCLUSIONS: These simulation results suggest that surveillance of certain subtypes of avian influenza virus, in chicken flocks in particular, needs to be sensitive and timely if infection is to be detected with sufficient time to implement control measures. The variability in the predictions highlights that avian influenza outbreaks are different in severity, speed and duration, so surveillance and disease response need to be nuanced and fit the specific context of poultry species and virus subtypes.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A Subtipo H7N7 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves Domésticas , Vírus da Influenza A Subtipo H7N3 , Galinhas , Surtos de Doenças/veterinária , Doenças das Aves Domésticas/epidemiologia
2.
Front Immunol ; 14: 1200718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313410

RESUMO

Neuraminidase (NA) accounts for approximately 10-20% of the total glycoproteins on the surface of influenza viruses. It cleaves sialic acids on glycoproteins, which facilitates virus entry into the airways by cleaving heavily glycosylated mucins in mucus and the release of progeny virus from the surface of infected cells. These functions make NA an attractive vaccine target. To inform rational vaccine design, we define the functionality of influenza DNA vaccine-induced NA-specific antibodies relative to antigenic sites in pigs and ferrets challenged with a vaccine-homologous A/California/7/2009(H1N1)pdm09 strain. Sera collected pre-vaccination, post-vaccination and post-challenge were analyzed for antibody-mediated inhibition of NA activity using a recombinant H7N1CA09 virus. Antigenic sites were further identified with linear and conformational peptide microarrays spanning the full NA of A/California/04/2009(H1N1)pdm09. Vaccine-induced NA-specific antibodies inhibited the enzymatic function of NA in both animal models. The antibodies target critical sites of NA such as the enzymatic site, second sialic binding site and framework residues, shown here by high-resolution epitope mapping. New possible antigenic sites were identified that potentially block the catalytic activity of NA, including an epitope recognized solely in pigs and ferrets with neuraminidase inhibition, which could be a key antigenic site affecting NA function. These findings show that our influenza DNA vaccine candidate induces NA-specific antibodies that target known critical sites, and new potential antigenic sites of NA, inhibiting the catalytic activity of NA.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H7N1 , Vacinas contra Influenza , Influenza Humana , Vacinas de DNA , Animais , Suínos , Humanos , Furões , Neuraminidase/genética , Anticorpos Antivirais
3.
Food Environ Virol ; 15(3): 212-223, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37155116

RESUMO

Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.


Assuntos
COVID-19 , Desinfetantes , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A , Influenza Pandêmica, 1918-1919 , Influenza Humana , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , Muramidase/farmacologia , Desinfetantes/farmacologia , SARS-CoV-2 , Temperatura Alta , Antivirais/farmacologia
4.
Waste Manag ; 161: 84-91, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870300

RESUMO

Composting has been recognized as a viable method to dispose of animal carcasses. Common concerns related to the composting process include low core temperatures, leachate generation, and ammonia emissions. This study tested co-composting full-size poultry carcasses with commercially available biochars at an aeration rate of 0.8 L∙min-1. Biochars prepared by gasifying wood pallets, distillers' grains, and cow manure were added to the composting bins at the 13% rate (by volume). Results showed that poultry carcasses with wood-based and cow manure biochar increased temperatures by 2.0 to 3.3 °C. All biochar-amended bins met the time-temperature criteria to eliminate avian influenza (H7N1) viruses, which could not be achieved without biochar addition. Wood-based biochar amendment lowered the cumulative chemical oxygen demand of the leachate samples by 87% (P = 0.02). At the rate studied, the biochar amendment did not significantly affect ammonia emissions (P = 0.56). BET surface area of wood-based biochar was 1.4 and 28 times greater than that of cow manure and distillers' grain biochar, respectively. Compared to no biochar addition, wood-based biochar resulted in significantly higher compost temperatures (P = 0.02), lower leachate COD values (P = 0.02), and a higher total nitrogen content (P = 0.01) while it did not cause an increase in sodium content (P = 0.94) of the finished compost. In conclusion, amending the poultry carcass composting process with wood-based biochar (13% by volume) is recommended, especially to eliminate disease-causing agents.


Assuntos
Compostagem , Vírus da Influenza A Subtipo H7N1 , Animais , Bovinos , Aves Domésticas , Esterco , Temperatura , Amônia , Madeira/química , Solo/química , Carvão Vegetal/química , Nitrogênio/análise
5.
Viruses ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992300

RESUMO

Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αß+ γδ and CD4+CD8αα+ αVß1 T cells, and a significantly higher proportion of the CD8αß+ γδ and CD8αß+ αVß1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.


Assuntos
Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Antivirais
6.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851542

RESUMO

Most influenza viruses express the PB1-F2 protein which is regarded as a virulence factor. However, PB1-F2 behaves differently in avian and mammalian hosts, suggesting that this protein may be involved in the species barrier crossings regularly observed in influenza viruses. To better understand the functions associated with this viral protein, we decided to compare the BioID2-derived proximity interactome of a human PB1-F2 from an H3N2 virus with that of an avian PB1-F2 from an H7N1 strain. The results obtained reveal that the two proteins share only a few interactors and thus common functions. The human virus protein is mainly involved in signaling by Rho GTPases while the avian virus protein is mainly involved in ribonucleoprotein complex biogenesis. PB1-F2 H3N2 interactors include several members of the 14-3-3 protein family, a family of regulatory proteins involved in many signaling pathways. We then validated the interaction with 14-3-3 proteins and were able to show that the association of H3N2-PB1-F2 with YWHAH increased the activity of the antiviral sensor MDA5, while H7N1-PB1-F2 had no effect. Collectively, these results show that PB1-F2 can associate with a large range of protein complexes and exert a wide variety of functions. Furthermore, PB1-F2 interactome differs according to the avian or human origin of the protein.


Assuntos
Proteínas Aviárias , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Proteínas 14-3-3 , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Mamíferos
7.
J Virol ; 97(2): e0169422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719241

RESUMO

Viral subunit vaccines contain the specific antigen deemed most important for development of protective immune responses. Typically, the chosen antigen is a surface protein involved in cellular entry of the virus, and neutralizing antibodies may prevent this. For influenza, hemagglutinin (HA) is thus a preferred antigen. However, the natural trimeric form of HA is often not considered during subunit vaccine development. Here, we have designed a vaccine format that maintains the trimeric HA conformation while targeting antigen toward major histocompatibility complex class II (MHCII) molecules or chemokine receptors on antigen-presenting cells (APC) for enhanced immunogenicity. Results demonstrated that a single DNA vaccination induced strong antibody and T-cell responses in mice. Importantly, a single DNA vaccination also protected mice from lethal challenges with influenza viruses H1N1 and H5N1. To further evaluate the versatility of the format, we developed MHCII-targeted HA from influenza A/California/04/2009(H1N1) as a protein vaccine and benchmarked this against Pandemrix and Flublok. These vaccine formats are different, but similar immune responses obtained with lower vaccine doses indicated that the MHCII-targeted subunit vaccine has an immunogenicity and efficacy that warrants progression to larger animals and humans. IMPORTANCE Subunit vaccines present only selected viral proteins to the immune system and allow for safe and easy production. Here, we have developed a novel vaccine where influenza hemagglutinin is presented in the natural trimeric form and then steered toward antigen-presenting cells for increased immunogenicity. We demonstrate efficient induction of antibodies and T-cell responses, and demonstrate that the vaccine format can protect mice against influenza subtypes H1N1, H5N1, and H7N1.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N1 , Vacinas contra Influenza/imunologia , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de DNA/imunologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T/imunologia
8.
J Virol ; 96(17): e0099422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993736

RESUMO

Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Perus , Fatores de Virulência , Virulência , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Perus/virologia , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética
9.
Front Cell Infect Microbiol ; 12: 841447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360113

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has led to the initiation of unprecedented research efforts to understand the pathogenesis mediated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). More knowledge is needed regarding the cell type-specific cytopathology and its impact on cellular tropism. Furthermore, the impact of novel SARS-CoV-2 mutations on cellular tropism, alternative routes of entry, the impact of co-infections, and virus replication kinetics along the respiratory tract remains to be explored in improved models. Most applied virology models are not well suited to address the remaining questions, as they do not recapitulate the histoarchitecture and cellular composition of human respiratory tissues. The overall aim of this work was to establish from single biopsy specimens, a human adult stem cell-derived organoid model representing the upper respiratory airways and lungs and explore the applicability of this model to study respiratory virus infection. First, we characterized the organoid model with respect to growth pattern and histoarchitecture, cellular composition, and functional characteristics. Next, in situ expression of viral entry receptors, including influenza virus-relevant sialic acids and SARS-CoV-2 entry receptor ACE2 and TMPRSS2, were confirmed in organoids of bronchiolar and alveolar differentiation. We further showed successful infection by pseudotype influenza A H7N1 and H5N1 virus, and the ability of the model to support viral replication of influenza A H7N1 virus. Finally, successful infection and replication of a clinical isolate of SARS-CoV-2 were confirmed in the organoids by TCID50 assay and immunostaining to detect intracellular SARS-CoV-2 specific nucleocapsid and dsRNA. The prominent syncytia formation in organoid tissues following SARS-CoV-2 infection mimics the findings from infected human tissues in situ. We conclude that the human organotypic model described here may be particularly useful for virology studies to evaluate regional differences in the host response to infection. The model contains the various cell types along the respiratory tract, expresses respiratory virus entry factors, and supports successful infection and replication of influenza virus and SARS-CoV-2. Thus, the model may serve as a relevant and reliable tool in virology and aid in pandemic preparedness, and efficient evaluation of antiviral strategies.


Assuntos
COVID-19 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N1 , Influenza Humana , Adulto , Humanos , Pulmão , Organoides , SARS-CoV-2
10.
ACS Appl Mater Interfaces ; 14(14): 16462-16476, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357127

RESUMO

Requirements of speed and simplicity in testing stimulate the development of modern biosensors. Electrolyte-gated organic field-effect transistors (EGOFETs) are a promising platform for ultrasensitive, fast, and reliable detection of biological molecules for low-cost, point-of-care bioelectronic sensing. Biosensitivity of the EGOFET devices can be achieved by modification with receptors of one of the electronic active interfaces of the transistor gate or organic semiconductor surface. Functionalization of the latter gives the advantage in the creation of a planar architecture and compact devices for lab-on-chip design. Herein, we propose a universal, fast, and simple technique based on doctor blading and Langmuir-Schaefer methods for functionalization of the semiconducting surface of C8-BTBT-C8, allowing the fabrication of a large-scale biorecognition layer based on the novel functional derivative of BTBT-containing biotin fragments as a foundation for further biomodification. The fabricated devices are very efficient and operate stably in phosphate-buffered saline solution with high reproducibility of electrical properties in the EGOFET regime. The development of biorecognition properties of the proposed biolayer is based on the streptavidin-biotin interactions between the consecutive layers and can be used for a wide variety of receptors. As a proof-of-concept, we demonstrate the specific response of the BTBT-based biorecognition layer in EGOFETs to influenza A virus (H7N1 strain). The elaborated approach to biorecognition layer formation is appropriate but not limited to aptamer-based receptor molecules and can be further applied for fabricating several biosensors for various analytes on one substrate and paves the way for "electronic tongue" creation.


Assuntos
Técnicas Biossensoriais , Vírus da Influenza A Subtipo H7N1 , Técnicas Biossensoriais/métodos , Biotina , Eletrólitos/química , Reprodutibilidade dos Testes , Tiofenos
11.
Transbound Emerg Dis ; 69(4): e605-e620, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34989481

RESUMO

From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H7N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Bangladesh/epidemiologia , Galinhas , Patos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3 , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Áreas Alagadas
12.
BMC Vet Res ; 18(1): 48, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042528

RESUMO

BACKGROUND: Rigorous testing is a prerequisite to prove freedom of notifiable influenza A virus infections in commercially farmed ostriches, as is the isolation and identification of circulating strains. Pooling 5 ostrich tracheal swabs in a 50 % v/v phosphate-buffered saline (PBS): glycerol transport medium (without antibiotics) is the current standard practice to increase reverse transcription real time PCR (RT-rtPCR) testing throughput and simultaneously reduce the test costs. In this study we investigated whether doubling ostrich tracheal swabs to 10 per pool would affect the sensitivity of detection of H5N8 high pathogenicity avian influenza virus (HPAIV) and H7N1 low pathogenicity avian influenza virus (LPAIV) by quantitative RT-rtPCR, and we also compared the effect of a protein-rich, brain heart infusion broth (BHI) virus transport media containing broad spectrum antimicrobials (VTM) on the efficacy of isolating the H5N8 and H7N1 viruses from ostrich tracheas, since the historical isolation success rate from these birds has been poor. RESULTS: Increasing the ostrich swabs from 5 to 10 per pool in 3 mls of transport medium had no detrimental effect on the sensitivity of the RT-rtPCR assay in detecting H5N8 HPAIV or H7N1 LPAIV; and doubling of the swab pool size even seemed to improve the sensitivity of virus detection at levels that were statistically significant (p less than or equal to 0.05) in medium and low doses of spiked H5N8 HPAIV and at high levels of spiked H7N1 LPAIV. On virus isolation, more samples were positive when swabs were stored in a protein-rich viral transport medium supplemented with antimicrobials in PBS: glycerol (10/18 vs. 7/18 for H5N8 HPAI); although the differences were not statistically significant, overall higher virus titres were detected (106.7 - 103.0 vs. 106.6 - 103.1 EID50 for H5N8 HPAIV and 105.5 - 101.4 vs. 105.1 - 101.3 EID50 for H7N1 LPAIV); and fewer passages were required with less filtration for both H5N8 HPAI and H7N1 LPAI strains. CONCLUSION: Ostrich tracheal swab pool size could be increased from 5 to 10 in 3mls of VTM with no loss in sensitivity of the RT-rtPCR assay in detecting HPAI or LPAI viruses, and HPAI virus could be isolated from a greater proportion of swabs stored in VTM compared to PBS: glycerol without antibiotics.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Manejo de Espécimes/veterinária , Struthioniformes , Animais , Glicerol , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/diagnóstico , Struthioniformes/virologia
13.
Vet Microbiol ; 263: 109251, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656859

RESUMO

Infection dynamics data for influenza A virus in a species is important for understanding host-pathogen interactions and developing effective control strategies. Seven-week-old ostriches challenged with H7N1 low pathogenic viruses (LPAIV) or clade 2.3.4.4B H5N8 high pathogenic viruses (HPAIV) were co- housed with non-challenged contacts. Clinical signs, virus shed in the trachea, cloaca, and feather pulp, and antibody responses were quantified over 14 days. H7N1 LPAIV-infected ostriches remained generally healthy with some showing signs of mild conjunctivitis and rhinitis attributed to Mycoplasma co-infection. Mean tracheal virus shedding titres in contact birds peaked 3 days (106.2 EID50 equivalents / ml) and 9 days (105.28 EID50 equivalents / ml) after introduction, lasting for at least 13 days post infection. Cloacal shedding was substantially lower and ceased within 10 days of onset, and low virus levels were detected in wing feather pulp up until day 14. H5N8 HPAIV -infected ostriches showed various degrees of morbidity, with 2/3 mortalities in the in-contact group. Mean tracheal shedding in contact birds peaked 8 days after introduction (106.32 EID50 equivalents/ ml) and lasted beyond 14 days in survivors. Cloacal shedding and virus in feather pulp was generally higher and more consistently positive compared to H7N1 LPAIV, and was also detectable at least until 14 days post infection in survivors. Antibodies against H5N8 HPAIV and H7N1 LPAIV only appeared after day 7 post exposure, with higher titres induced by the HPAIV compared to the LPAIV, and neuraminidase treatment was essential to remove non-specific inhibitors from the H5N8-positive antisera.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Struthioniformes , Animais , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/virologia
14.
Avian Dis ; 65(1): 59-62, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34339123

RESUMO

Here, we report three detections of H7N1 low pathogenicity avian influenza viruses (LPAIV) from poultry in Missouri (n = 2) and Texas (n = 1) during February and March 2018. Complete genome sequencing and comparative phylogenetic analysis suggest that the H7 LPAIV precursor viruses were circulating in wild birds in North America during the fall and winter of 2017 and spilled over into domestic poultry in Texas and Missouri independently during the spring of 2018.


Nota de investigación­Virus de la influenza aviar de baja patogenicidad H7N1 en avicultura, Estados Unidos, 2018. En este artículo se reportan tres detecciones del virus de influenza aviar de baja patogenicidad H7N1 (LPAIV) en avicultura en Missouri (n = 2) y Texas (n = 1) durante febrero y marzo del 2018. La secuenciación completa del genoma y el análisis filogenético comparativo sugieren que precursores de este virus de influenza de baja patogenicidad H7 circulaban en aves silvestres en América del Norte durante el otoño y el invierno de 2017 y se propagaron a las aves comerciales en Texas y Missouri de forma independiente durante la primavera del 2018.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Perus , Animais , Vírus da Influenza A Subtipo H7N1/patogenicidade , Missouri , Texas , Virulência
15.
Viruses ; 13(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452449

RESUMO

The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. The H7 viruses circulate in ducks, poultry and equines and have repeatedly caused outbreaks of disease in humans. The laboratory strain A/chicken/Rostock/R0p/1934 (H7N1) (R0p), which was previously derived from the highly pathogenic strain A/FPV/Rostock/1934 (H7N1), was studied in this work to ascertain its biological property, genome stability and virulent changing mechanism. Several virus variants were obtained by serial passages in the chicken lungs. After 10 passages of this virus through the chicken lungs we obtained a much more pathogenic variant than the starting R0p. The study of intermediate passages showed a sharp increase in pathogenicity between the fifth and sixth passage. By cloning these variants, a pair of strains (R5p and R6p) was obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely reversion Gly140Arg in HA1. This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity in chicken and mice, R6p differs from R5p in the shape of foci in cell culture and an increased affinity for a negatively charged receptor analogue, while maintaining a pattern of receptor-binding specificity and the pH of conformational change of HA.


Assuntos
Substituição de Aminoácidos , Arginina , Glicina , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H7N1/química , Vírus da Influenza A Subtipo H7N1/patogenicidade , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H7N1/genética , Influenza Aviária , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/virologia , Inoculações Seriadas , Virulência
16.
Virulence ; 12(1): 1647-1660, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125653

RESUMO

Influenza A viruses cause important diseases in both human and animal. The PB1-F2 protein is a virulence factor expressed by some influenza viruses. Its deleterious action for the infected host is mostly described in mammals, while the available information is scarce in avian hosts. In this work, we compared the effects of PB1-F2 in avian and mammalian hosts by taking advantage of the zoonotic capabilities of an avian H7N1 virus. In vitro, the H7N1 virus did not behave differently when PB1-F2 was deficient while a H3N2 virus devoid of PB1-F2 was clearly less inflammatory. Likewise, when performing in vivo challenges of either chickens or embryonated eggs, with the wild-type or the PB1-F2 deficient virus, no difference could be observed in terms of mortality, host response or tropism. PB1-F2 therefore does not appear to play a major role as a virulence factor in the avian host. However, when infecting NF-κB-luciferase reporter mice with the H7N1 viruses, a massive PB1-F2-dependent inflammation was quantified, highlighting the host specificity of PB1-F2 virulence. Surprisingly, a chimeric 7:1 H3N2 virus harboring an H7N1-origin segment 2 (i.e. expressing the avian PB1-F2) induced a milder inflammatory response than its PB1-F2-deficient counterpart. This result shows that the pro-inflammatory activity of PB1-F2 is governed by complex mechanisms involving components from both the virus and its infected host. Thus, a mere exchange of segment 2 between strains is not sufficient to transmit the deleterious character of PB1-F2.


Assuntos
Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H7N1 , Infecções por Orthomyxoviridae/virologia , Proteínas Virais , Fatores de Virulência , Animais , Galinhas , Vírus da Influenza A Subtipo H3N2/genética , Camundongos , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
17.
Virus Res ; 297: 198383, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705798

RESUMO

Slightly acidic hypochlorous acid waters (SAHWs) with pH of 5.2-5.8 containing different concentrations of free available chlorine - 62, 119, 220, 300, and 540 ppm (SAHW-62, -119, -220, -300, and -540, respectively) - were evaluated for their virucidal activity toward a low pathogenic H7N1 avian influenza virus (AIV) and an infectious bronchitis virus (IBV) in suspension, abiotic carrier, and direct spray tests, with the presence of organic materials. In the carrier test, the dropping and wiping techniques were performed toward viruses on carriers. In the suspension test, SAHW-62 could decrease the viral titer of both AIV and IBV by more than 1000 times within 30 s. With the dropping technique, IBV on carriers showed high resistance to SAHW, while AIV on plastic carrier was inactivated to an effective level (≧3 log virus reduction) within 1 min. With the wiping technique, SAHW-62 could inactivate both AIV and IBV on wiped plastic carriers to an effective level within 30 s. However, SAHW-220 could not inactivate IBV in the wiping rayon sheet to an effective level. In the direct spray test, sprayed SAHW-300 within 10 min, and SAHW-540 within 20 min, inactivated AIV and IBV on the rayon sheets to undetectable level, respectively. Our study indicates that the usage of wipes with SAHW could remove viruses from plastic carriers, while viruses remained in the wipes. Besides, a small volume of sprayed SAHW was effective against the viruses on the rayon sheets for daily cleaning in the application area. The findings we obtained concerning IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses.


Assuntos
Antivirais/farmacologia , Desinfetantes/farmacologia , Ácido Hipocloroso/farmacologia , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N1/efeitos dos fármacos , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Cães , Patos , Hepatócitos , Influenza Aviária/prevenção & controle , Células Madin Darby de Rim Canino
18.
Avian Pathol ; 50(1): 98-106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034513

RESUMO

Avian influenza (AI) is one of the most important viral diseases in poultry, wildlife and humans. Available data indicate that pigeons play a minimum role in the epidemiology of AI. However, a degree of variation exists in the susceptibility of pigeons to highly pathogenic AI viruses (HPAIVs), especially since the emergence of the goose/Guangdong H5 lineage. Here, the pathogenesis of H5N8 HPAIV in comparison with a H7N1 HPAIV and the role of pigeons in the epidemiology of these viruses were evaluated. Local and urban pigeons (Columba livia var. domestica) were intranasally inoculated with 105 ELD50 of A/goose/Spain/IA17CR02699/2017 (H5N8) or A/Chicken/Italy/5093/1999 (H7N1) and monitored during 14 days. Several pigeons inoculated with H5N8 or H7N1 seroconverted. However, clinical signs, mortality, microscopic lesions and viral antigen were only detected in a local pigeon inoculated with H5N8 HPAIV. This pigeon presented prostration and neurological signs that correlated with the presence of large areas of necrosis and widespread AIV antigen in the central nervous system, indicating that the fatal outcome was associated with neurological dysfunction. Viral RNA in swabs was detected in some pigeons inoculated with H7N1 and H5N8, but it was inconsistent, short-term and at low titres. The present study demonstrates that the majority of pigeons were resistant to H5N8 and H7N1 HPAIVs, despite several pigeons developing asymptomatic infections. The limited viral shedding indicates a minimum role of pigeons as amplifiers of HPAIVs, regardless of the viral lineage, and suggests that this species may represent a low risk for environmental contamination. RESEARCH HIGHLIGHTS H7N1 and H5N8 HPAIVs can produce subclinical infections in pigeons. The mortality caused by H5N8 HPAIV in one pigeon was associated with neurological dysfunction. Pigeons represent a low risk for environmental contamination by HPAIVs.


Assuntos
Columbidae/virologia , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/virologia , Animais , Animais Selvagens , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/imunologia , Vírus da Influenza A Subtipo H7N1/genética , RNA Viral/genética , Virulência , Eliminação de Partículas Virais
19.
Front Immunol ; 12: 800188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003125

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.


Assuntos
Galinhas/genética , Galinhas/virologia , Resistência à Doença/genética , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária/genética , Animais , Influenza Aviária/virologia , RNA-Seq
20.
PLoS One ; 15(10): e0240290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031421

RESUMO

Highly pathogenic (HPAI) strains emerge from their low pathogenic (LPAI) precursors and cause severe disease in poultry with enormous economic losses, and zoonotic potential. Understanding the mechanisms involved in HPAI emergence is thus an important goal for risk assessments. In this study ostrich-origin H5N2 and H7N1 LPAI progenitor viruses were serially passaged seventeen times in 14-day old embryonated chicken eggs and Ion Torrent ultra-deep sequencing was used to monitor the incremental changes in the consensus genome sequences. Both virus strains increased in virulence with successive passages, but the H7N1 virus attained a virulent phenotype sooner. Mutations V63M, E228V and D272G in the HA protein, Q357K in the nucleoprotein (NP) and H155P in the neuraminidase protein correlated with the increased pathogenicity of the H5N2 virus; whereas R584H and L589I substitutions in the polymerase B2 protein, A146T and Q220E in HA plus D231N in the matrix 1 protein correlated with increased pathogenicity of the H7N1 virus in embryos. Enzymatic cleavage of HA protein is the critical virulence determinant, and HA cleavage site motifs containing multibasic amino acids were detected at the sub-consensus level. The motifs PQERRR/GLF and PQRERR/GLF were first detected in passages 11 and 15 respectively of the H5N2 virus, and in the H7N1 virus the motifs PELPKGKK/GLF and PELPKRR/GLF were detected as early as passage 7. Most significantly, a 13 nucleotide insert of unknown origin was identified at passage 6 of the H5N2 virus, and at passage 17 a 42 nucleotide insert derived from the influenza NP gene was identified. This is the first report of non-homologous recombination at the HA cleavage site in an H5 subtype virus. This study provides insights into how HPAI viruses emerge from low pathogenic precursors and demonstrated the pathogenic potential of H5N2 and H7N1 strains that have not yet been implicated in HPAI outbreaks.


Assuntos
Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Animais , Embrião de Galinha , Sequência Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/fisiologia , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/fisiologia , Inoculações Seriadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...