Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Can J Vet Res ; 86(4): 269-285, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36211217

RESUMO

Bovine leukemia virus (BLV) subclinical infection promotes persistent lymphocytosis (PL), which is related to susceptibility and progression to lymphoma. Moreover, lymphocyte counts directly correlate with BLV antibody titers and proviral load, and cell immune responses are considered atypical due to immune suppression. In order to determine the relationship of PL, antibody titers, and proviral load with interleukin (IL)-12, interferon (IFN)-γ, IL-2, IL-4, IL-10, and transforming growth factor (TGF)-ß expression in a 3-month interval, 58 cows were selected (30 BLV+ and 28 BLV-) from a high-prevalence dairy herd to complete 3 monthly blood samplings for the assessment of PL, BLV antibody titers, BLV proviral load, and IL-12, IFN-γ, IL-2, IL-4, IL-10, and TGF-ß expression. At sampling conclusion, the BLV-infected cows were grouped according to PL, BLV proviral load, and BLV antibody titers as follows: BLV+PL+ (n = 16) and BLV+PL- (n = 14); high proviral load (HPL) (n = 18) and low proviral load (LPL) (n = 13); high antibody titers (HAT) (n = 17) and low antibody titers (LAT) (n = 14). The BLV+PL+ cows showed significantly higher proviral load and antibody titers than the BLV+PL- group; however, the former suggested spread presumably unrelated to lymphoma outcome, because HPL was observed in PL- cows in the last sampling. Consistent with the data, a higher antibody response strongly indicated BLV susceptibility since it was linked to PL+ occurrence and a cytokine profile compatible with immune suppression. Furthermore, a reversion to lower antibody titers was observed in cows with HPL far ahead of time, most likely due to long-term immune suppression. In addition, high expression of IL-10 and TGF-ß was associated with reduced IL-12, IFN-γ, IL-2, and IL-4 expression alongside PL, HAT, and HPL in BLV-infected cows, suggesting an IL-10- and TGF-ß-induced immune suppression. The IL-10 expression was increasing throughout, implying disease progression, as described. In conclusion, the proliferative expansion of lymphocytes known as PL might enhance a regulatory-rich cell population (Bregs and/or Tregs) that secretes IL-10 and TGF-ß, leading to immune suppression. Further studies must be conducted regarding the types of regulatory cells involved in BLV-induced immune suppression.


L'infection subclinique par le virus de la leucémie bovine (BLV) favorise une lymphocytose persistante (PL), qui est liée à la susceptibilité et à la progression vers le lymphome. De plus, le nombre de lymphocytes est directement corrélé aux titres d'anticorps BLV et à la charge provirale, et les réponses immunitaires cellulaires sont considérées comme atypiques en raison de la suppression immunitaire. Afin de déterminer la relation entre PL, les titres d'anticorps et la charge provirale avec l'interleukine (IL)-12, l'interféron (IFN)-γ, l'IL-2, l'IL-4, l'IL-10 et l'expression du facteur de croissance transformant (TGF)-ß dans un intervalle de 3 mois, 58 vaches ont été sélectionnées (30 BLV+ et 28 BLV−) à partir d'un troupeau laitier à forte prévalence pour compléter trois prélèvements sanguins mensuels pour l'évaluation de PL, des titres d'anticorps BLV, de la charge provirale BLV et l'expression d'IL-12, IFN-γ, d'IL-2, d'IL-4, d'IL-10 et TGF-ß. À la fin de l'échantillonnage, les vaches infectées par le BLV ont été regroupées en fonction du PL, de la charge provirale du BLV et des titres d'anticorps du BLV comme suit : BLV+PL+ (n = 16) et BLV+PL− (n = 14); charge provirale élevée (HPL) (n = 18) et charge provirale faible (LPL) (n = 13); titres d'anticorps élevés (HAT) (n = 17) et titres d'anticorps faibles (LAT) (n = 14). Les vaches BLV+PL+ ont montré une charge provirale et des titres d'anticorps significativement plus élevés que le groupe BLV+PL−; cependant, le premier suggère une propagation vraisemblablement sans rapport avec l'issue du lymphome, car HPL a été observé chez les vaches PL− lors du dernier échantillonnage. Conformément aux données, une réponse anticorps plus élevée indiquait fortement une sensibilité au BLV puisqu'elle était liée à l'apparition de PL+ et à un profil de cytokines compatible avec la suppression immunitaire. De plus, un retour à des titres d'anticorps plus faibles a été observé chez les vaches atteintes de HPL bien avant le temps, probablement en raison d'une immunosuppression à long terme. De plus, une expression élevée d'IL-10 et de TGF-ß était associée à une expression réduite d'IL-12, d'IFN-γ, d'IL-2 et d'IL-4 aux côtés de PL, HAT et HPL chez les vaches infectées par le BLV, suggérant une immunosuppression induite par IL-10 et le TGF-ß. L'expression d'IL-10 augmentait tout au long, impliquant une progression de la maladie, comme décrit. En conclusion, l'expansion proliférative des lymphocytes connus sous le nom de PL pourrait renforcer une population de cellules riches en régulation (Bregs et/ou Tregs) qui sécrète d'IL-10 et du TGF-ß, conduisant à une suppression immunitaire. D'autres études doivent être menées sur les types de cellules régulatrices impliquées dans la suppression immunitaire induite par le BLV.(Traduit par Docteur Serge Messier).


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfocitose , Animais , Bovinos , Citocinas , Leucose Enzoótica Bovina/epidemiologia , Feminino , Interferon gama/genética , Interleucina-10 , Interleucina-12 , Interleucina-2 , Interleucina-4/genética , Vírus da Leucemia Bovina/fisiologia , Linfocitose/veterinária , Prevalência , Provírus/genética , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores
2.
PLoS One ; 17(3): e0263660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263339

RESUMO

Immune suppression during pregnancy and parturition is considered a risk factor that is related to the progression of bovine chronic diseases, such as bovine leukosis, which is caused by bovine leukemia virus (BLV). Our previous studies have demonstrated that prostaglandin E2 (PGE2) suppresses BLV-specific Th1 responses and contributes to the disease progression during BLV infection. Although PGE2 reportedly plays important roles in the induction of parturition, PGE2 involvement in immune suppression during parturition is unknown. To investigate its involvement, we analyzed PGE2 kinetics and Th1 responses in BLV-infected pregnant cattle. PGE2 concentrations in sera were increased, whereas IFN-γ responses were decreased before delivery. PGE2 is known to suppress Th1 immune responses in cattle. Thus, these data suggest that PGE2 upregulation inhibits Th1 responses during parturition. We also found that estradiol was important for PGE2 induction in pregnant cattle. In vitro analyses indicated that estradiol suppressed IFN-γ production, at least in part, via PGE2/EP4 signaling. In vivo analyses showed that estradiol administration significantly influenced the induction of PGE2 production and impaired Th1 responses. Our data suggest that estradiol-induced PGE2 is involved in the suppression of Th1 responses during pregnancy and parturition in cattle, which could contribute to the progression of BLV infection.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Dinoprostona , Estradiol , Feminino , Vírus da Leucemia Bovina/fisiologia , Parto , Gravidez
3.
Vet Microbiol ; 263: 109269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34781193

RESUMO

Enzootic bovine leukosis (EBL) is a B-cell lymphoma caused by the bovine leukemia virus (BLV). Although an association between EBL and mutations in the bovine tumor suppressor gene TP53 (bTP53) has been suggested, the substantive incidence rate of bTP53 mutations in EBL cattle is still unclear. In this study, we investigated the complete sequence (exons 2-11) of bTP53 in tissue and peripheral blood leukocyte (PBL) samples obtained from 154 EBL cattle and 117 cattle without EBL (non-EBL cattle) to elucidate the correlation between bTP53 mutations and EBL. The detection frequencies of non-synonymous (NS) and deletion mutations in bTP53 in EBL cattle were significantly higher than those in non-EBL cattle in both tissue and PBL samples (p < 0.05). Among these mutations in EBL cattle, 73.7 % (42/54) were homologous to those of human TP53 (hTP53), which were previously detected in various tumors. It has been reported that 95.2 % (40/42) of these hTP53 mutations induced complete or partial loss of the transactivating function of its encoding protein, P53. Moreover, the BLV proviral load in tissue samples was significantly higher in cattle harboring bTP53 NS and deletion mutations than in cattle without these mutations in both EBL and BLV-infected non-EBL cattle (p < 0.05). Although the activity of the mutant variants of bP53 must be further investigated, our findings revealed that bTP53 mutations are involved in tumorigenesis in BLV-infected cells and EBL-associated carcinogenesis.


Assuntos
Leucose Enzoótica Bovina , Proteína Supressora de Tumor p53 , Animais , Bovinos/genética , Leucose Enzoótica Bovina/genética , Vírus da Leucemia Bovina/fisiologia , Mutação , Proteína Supressora de Tumor p53/genética
4.
Vet Res Commun ; 45(4): 431-439, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34453235

RESUMO

Bovine leukemia virus (BLV) main host cells are B lymphocytes. Infected animals can be classified into high or low proviral load (HPL or LPL respectively), regarding the number of proviral copies infected lymphocytes they carry. After infection, there is an overexpression of several cytokines, particularly TNF-α, which has a delicate regulation mediated by receptors TNFRI and TNFRII; the first one involved with apoptosis, while the other stimulates cell proliferation. The study aimed to quantify TNF-α and its receptors mRNA expression, and in which extent in vitro proliferation was affected, in peripheral blood mononuclear cells (PBMC) from BLV-infected animals with different proviral loads, after the addition or not of synthetic TNF-α (rTNF-α) for 48 h. PBMC from BLV-infected animals showed spontaneous proliferation after 48 h in culture but did not show changes in proliferation rates after 48 h incubation in the presence of the rTNF-α. TNF-α mRNA expression after 48 h culture without exogenous stimulation was significantly lower, regardless of the proviral load of the donor, compared to non-infected animals. In the LPL animals, the expression of TNF-α mRNA was significantly lower with respect to the control group while the expression of TNFRI mRNA was significantly increased. The HPL animals showed a significant decrease in the expression of TNF-α and TNFRII mRNA respect to the control group. After 48 h incubation with rTNF-α, PBMC from infected animals had different responses: TNF-α and TNFRI mRNA expression was reduced in PBMC from the LPL group compared to the BLV negative group, but no differences were observed in PBMC from the HPL group. TNFRII mRNA expression showed no differences between HPL, LPL, and BLV negative groups, though HPL animals expressed 10.35 times more TNFRI mRNA than LPL. These results support the hypothesis that LPL animals, when faced with viral reactivation, present a pro-apoptotic and anti-proliferative state. However, complementary studies are needed to explain the influence of TNFRII on the development of the HLP profile. On the other hand, exogenous stimulation studies reinforce the hypothesis that BLV infection compromises the immune response of the animals.


Assuntos
Leucose Enzoótica Bovina/imunologia , Vírus da Leucemia Bovina/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Carga Viral , Animais , Bovinos , Proliferação de Células , Citocinas/imunologia , Leucose Enzoótica Bovina/virologia , Expressão Gênica , Sistema Imunitário , Leucócitos Mononucleares/virologia , RNA Mensageiro/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Dev Comp Immunol ; 114: 103847, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888966

RESUMO

Bovine leukemia virus (BLV) infection is a bovine chronic infection caused by BLV, a member of the genus Deltaretrovirus. In this study, we examined the immunomodulatory effects of GS-9620, a toll-like receptor (TLR) 7 agonist, in cattle (Bos taurus) and its therapeutic potential for treating BLV infection. GS-9620 induced cytokine production in peripheral blood mononuclear cells (PBMCs) as well as CD80 expression in CD11c+ cells and increased CD69 and interferon (IFN)-γ expressions in T cells. Removing CD11c+ cells from PBMCs decreased CD69 expression in T cells in the presence of GS-9620. These results suggest that TLR7 agonism promotes T-cell activation via CD11c+ cells. Analyses using PBMCs from BLV-infected cattle revealed that TLR7 expression in CD11c+ cells was upregulated during late-stage BLV infection. Furthermore, GS-9620 increased IFN-γ and TNF-α production and inhibited syncytium formation in vitro, suggesting that GS-9620 may be used to treat BLV infection.


Assuntos
Antivirais/uso terapêutico , Leucose Enzoótica Bovina/imunologia , Vírus da Leucemia Bovina/fisiologia , Pteridinas/uso terapêutico , Células Th1/imunologia , Receptor 7 Toll-Like/agonistas , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antivirais/farmacologia , Antígeno CD11c/metabolismo , Bovinos , Células Cultivadas , Leucose Enzoótica Bovina/tratamento farmacológico , Interferon gama/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Pteridinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral
6.
J Dairy Sci ; 104(2): 1993-2007, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246606

RESUMO

In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.


Assuntos
Leucose Enzoótica Bovina/genética , Vírus da Leucemia Bovina/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Animais , Bovinos , Leucose Enzoótica Bovina/virologia , Feminino , Estudo de Associação Genômica Ampla/veterinária , Contagem de Leucócitos/veterinária , Leucócitos/virologia , Leucócitos Mononucleares/virologia , Contagem de Linfócitos/veterinária , Fenótipo , Provírus/fisiologia , Carga Viral/veterinária
7.
Anim Sci J ; 91(1): e13495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33372705

RESUMO

The effectiveness of on-farm continuous flow high-temperature short-time (HTST) pasteurization (i.e., 72°C for 15 s) for the inactivation of bovine leukemia virus (BLV) in milk was investigated with a sheep bioassay. Four sheep that had been inoculated with completely pasteurized milk containing approximately 3.4 × 107 BLV-infected peripheral blood mononuclear cells (PBMC) and treated by either HTST pasteurization or laboratory-scale low-temperature long-time (LTLT) pasteurization (i.e., 60°C for 30 min), remained negative for BLV for at least 17 weeks after inoculation. In contrast, all sheep inoculated with unpasteurized or inadequately pasteurized milk containing the same number of BLV-infected PBMC were tested positive for BLV and anti-BLV antibodies within 3 weeks after inoculation. These results suggest that on-farm continuous flow HTST pasteurization was equivalent value with inactivated BLV on the LTLT procedure and can effectively inactivate BLV in the milk. Therefore, on-farm HTST pasteurization of the pooled colostrum or milk used in automated feeding systems is likely to protect group-housed preweaned calves from BLV infection, thereby improving animal health on dairy farms.


Assuntos
Ração Animal/virologia , Indústria de Laticínios/métodos , Leucose Enzoótica Bovina/prevenção & controle , Leucose Enzoótica Bovina/virologia , Fazendas , Vírus da Leucemia Bovina/fisiologia , Leite/virologia , Pasteurização/métodos , Temperatura , Inativação de Vírus , Animais , Bovinos , Ovinos , Fatores de Tempo
8.
Viruses ; 12(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992917

RESUMO

Human T-lymphotrophic virus type 1 (HTLV-1) and Bovine leukemia virus (BLV) belong to the Deltaretrovirus genus. HTLV-1 is the etiologic agent of the highly aggressive and currently incurable cancer adult T-cell leukemia (ATL) and a neurological disease HTLV-1-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). BLV causes neoplastic proliferation of B cells in cattle: enzootic bovine leucosis (EBL). Despite the severity of these conditions, infection by HTLV-1 and BLV appear in most cases clinically asymptomatic. These viruses can undergo latency in their hosts. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infection, as well as for pathogenesis in vivo. In this review, we will present the mechanisms that control proviral activation and retroviral latency in deltaretroviruses, in comparison with other exogenous retroviruses. The 5' long terminal repeats (5'-LTRs) play a main role in controlling viral gene expression. While the regulation of transcription initiation is a major mechanism of silencing, we discuss topics that include (i) the epigenetic control of the provirus, (ii) the cis-elements present in the LTR, (iii) enhancers with cell-type specific regulatory functions, (iv) the role of virally-encoded transactivator proteins, (v) the role of repressors in transcription and silencing, (vi) the effect of hormonal signaling, (vii) implications of LTR variability on transcription and latency, and (viii) the regulatory role of non-coding RNAs. Finally, we discuss how a better understanding of these mechanisms may allow for the development of more effective treatments against Deltaretroviruses.


Assuntos
Regulação Viral da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus da Leucemia Bovina/genética , Latência Viral/genética , Animais , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Vírus da Leucemia Bovina/fisiologia , Mutação , RNA não Traduzido/metabolismo , Sequências Repetidas Terminais/genética , Proteínas Virais/metabolismo
9.
Virology ; 548: 226-235, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771769

RESUMO

Bovine leukemia virus (BLV) is a global problem that results in significant economic losses to the livestock industry. We developed three virus strains by inserting the HiBiT reporter tag from NanoLuc luciferase (NLuc) into limited sites within BLV molecular clones. Initial analysis for site selection of the tag insertion revealed a permissible site immediately downstream of the viral envelope gene. Therefore, NLuc activity could be used to measure virus copy numbers in the supernatant and the levels of cell infection. Productivity and growth kinetics of the reporter virus were similar to those of the wild-type strain; therefore, the reporter virus can be used to characterize the replication of chimeric viruses as well as responses to the antiviral drug, amprenavir. Collectively, our results suggest that the BLV reporter virus with a HiBiT tag insertion is a highly versatile system for various purposes such as evaluating virus replication and antiviral drugs.


Assuntos
Vírus da Leucemia Bovina/genética , Animais , Antivirais/farmacologia , Genes Reporter , Vírus da Leucemia Bovina/efeitos dos fármacos , Vírus da Leucemia Bovina/crescimento & desenvolvimento , Vírus da Leucemia Bovina/fisiologia , Luciferases/análise , Luciferases/genética , Luciferases/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Replicação Viral/efeitos dos fármacos
10.
J Dairy Sci ; 103(9): 8398-8406, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684477

RESUMO

Over the past 30 yr, the prevalence of bovine leukemia virus (BLV) infection has increased in North America, including Atlantic Canada, at both the herd and individual cow levels. This has occurred despite increased awareness of the disease and its deleterious effects and despite implementation of management practices aimed at reducing disease transmission. Our objectives were to identify risk factors associated with the within-herd prevalence of BLV-infected cows by using a risk assessment and management program workbook, as well as to determine the current level of BLV prevalence in the Atlantic Canada region. We hypothesized that previously established risk factors, including management practices associated with calf rearing and fly control, would affect within-herd BLV prevalence. Bulk tank milk (BTM) samples were collected in January and April of 2016 and again during the same months in 2017 and 2018 from all dairy farms shipping milk in the region. Samples were tested with ELISA for levels of anti-BLV antibodies to estimate within-herd prevalence. Regional BLV prevalence at the herd level was 88.39% of dairy herds infected in 2016 and 89.30% in 2018. All dairy farms shipping milk and who had BTM samples collected in 2017 (n = 605) were eligible to participate in the risk assessment and management program questionnaire (RAMP), which was developed and distributed to all bovine veterinarians in Atlantic Canada. One hundred and six RAMP were returned, with representation from all 4 provinces. The RAMP results were combined with the mean BTM ELISA results, and univariable logistic regression followed by multivariable logistic regression was performed to investigate the association between RAMP risk factors and the estimated within-herd BLV prevalence. Factors in the multivariable model significantly associated with the odds of a herd being classified as >25% estimated within-herd prevalence included history of diagnosis of clinical BLV and calves receiving colostrum from cows with unknown BLV status. Differences in within-herd prevalence were not associated with hypodermic needle and injection practices, rectal sleeve practices, or using bulls for natural breeding, based on these 106 dairy farms.


Assuntos
Gerenciamento Clínico , Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/prevenção & controle , Controle de Insetos , Medição de Risco , Criação de Animais Domésticos , Animais , Bovinos , Dípteros , Vírus da Leucemia Bovina/fisiologia , Novo Brunswick/epidemiologia , Terra Nova e Labrador/epidemiologia , Nova Escócia/epidemiologia , Prevalência , Ilha do Príncipe Eduardo/epidemiologia
11.
Prev Vet Med ; 182: 105084, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32682155

RESUMO

The objective of this study was to identify associations between herd management practices and the incidence rate of bovine leukemia virus (BLV) infections in Michigan dairy herds. Previous management risk factor studies were of antibody prevalence rather than the rate of recent infections. Milk samples were collected from cohorts of cows on 112 Michigan dairy herds and tested for BLV using an antibody capture ELISA (n = 3849 cows). Cows were subsequently followed for an average of 21 months. Cows negative for anti-BLV antibodies and still present in their respective herds were retested by the same antibody capture ELISA to estimate within-herd incidence rates. The overall crude incidence rate was 1.46 infections per 100 cow-months at risk for the 1314 retested cows in 107 herds. The average within-herd incidence rate was 2.28 infections per 100 cow-months (range: 0 to 9.76 infections per 100 cow-months). A negative binomial regression model was used to identify herd management practices associated with the within-herd incidence rate. Results of the final multivariable model identified higher herd prevalence, milking frequency, needle reuse, as well as housing post-parturient cows separately, to be associated with increased incidence rate. Utilization of sand bedding for the lactating herd was found to be associated with decreased incidence rates. Results of this study suggest potential routes of BLV transmission which should be further investigated as disease control targets in ongoing control programs.


Assuntos
Indústria de Laticínios/estatística & dados numéricos , Leucose Enzoótica Bovina/epidemiologia , Vírus da Leucemia Bovina/fisiologia , Animais , Anticorpos Antivirais , Bovinos , Leucose Enzoótica Bovina/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Incidência , Michigan/epidemiologia , Fatores de Risco
12.
Prev Vet Med ; 181: 105055, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32593082

RESUMO

Bovine leukosis is a chronic lymphoproliferative disorder caused by bovine leukemia virus (BLV). Previous studies estimate that 38 % of cow-calf beef herds and 10.3 % of individual beef cows in the US are BLV seropositive. About 70 % of BLV infected animals are asymptomatic carriers of the virus, while less than 5% develop lymphosarcoma, the leading reason for carcass condemnation at the US slaughterhouses. Studies provide evidence that BLV infection leads to decreased immune function making animals more vulnerable to other diseases, which could shorten their productive lifespan and increase economic losses in the cattle industry. BLV seropositive dairy cows are reportedly more likely to be culled sooner compared with their uninfected herd mates. Beyond simple prevalence studies, little is known about the impact of BLV infection in beef cattle production or specifically on beef cow longevity. Our objective was to determine the association between BLV infection and cow longevity in beef cow-calf operations. Twenty-seven cow-calf herds from the Upper Midwest volunteered to participate in this study. Female beef cattle (n = 3146) were tested for serum BLV antibodies by ELISA. A subsample of 648 cows were also tested for BLV proviral load (PVL). Culling data was collected for the subsequent 24 months. Twenty-one herds (77.7 %) had at least one BLV-infected animal, and 29.2 % (930/3146) of tested animals were BLV seropositive. Of the BLV-positive cows, 33.7 % (318/943) were culled compared with 32.1 % (541/1682) of the seronegative cows. BLV status did not affect cows' longevity within herds (P = 0.062). However, cows with high BLV PVL had decreased survival within the herd compared with ELISA- negative cows (P = 0.01). Overall, infection with BLV did not impact beef cow longevity unless the disease had progressed to a point of high BLV PVL.


Assuntos
Leucose Enzoótica Bovina/fisiopatologia , Vírus da Leucemia Bovina/fisiologia , Longevidade , Animais , Bovinos , Leucose Enzoótica Bovina/virologia , Feminino
13.
Vet J ; 257: 105449, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32546356

RESUMO

Infection with bovine leukaemia virus (BLV), a retrovirus, causes dysfunction of the immune system and can have a marked economic impact on dairy industries due to decreased milk production and reduced lifespan in affected dairy cattle. The presence of proviral DNA has been the major diagnostic indicator of BLV infection. However in the course of BLV infection, the viral genome can be dormant, without detectable gene expression, resulting in limited impact on infected animals. At present, there is limited knowledge regarding haematological indices in dairy cattle that could indicate activation of the BLV genome and suggest reactivated BLV infection. In this study, BLV infection and BLV genome reactivation were evaluated based on the presence of BLV DNA and BLV env gene transcripts, respectively. BLV RNA transcription was confirmed. Among 93 whole blood samples obtained from asymptomatic dairy cattle, the prevalence of BLV proviral DNA and transcripts was 93.5% (n = 87/93) and 83.9% (n = 78/93), respectively. Between groups with and without BLV, the mean counts of white blood cells and lymphocytes in whole blood were significantly associated with the presence of BLV RNA (P < 0.05), but not with BLV proviral DNA. These results shed light on the activation status of the BLV genome and should be taken into account when evaluating the possible impact of BLV on cattle.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Vírus da Leucemia Bovina/fisiologia , Contagem de Leucócitos/veterinária , RNA Viral/análise , Reinfecção/veterinária , Animais , Bovinos , Indústria de Laticínios , Leucose Enzoótica Bovina/virologia , Feminino , Reinfecção/epidemiologia , Reinfecção/virologia , Carga Viral/veterinária
14.
PLoS One ; 15(6): e0234939, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579585

RESUMO

Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.


Assuntos
Leucose Enzoótica Bovina/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus da Leucemia Bovina/fisiologia , Glândulas Mamárias Animais/patologia , RNA-Seq , Transcriptoma/genética , Animais , Bovinos , Linhagem Celular , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Genoma , Análise de Componente Principal
15.
J Dairy Sci ; 103(7): 6504-6510, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32389481

RESUMO

Previous studies have shown the presence of bovine leukemia virus (BLV) in colostrum and milk of naturally infected cows. The relationship between virus or provirus and specific antibodies in these secretions is particular to each infected cow and will probably determine whether the consumption of colostrum or milk from these naturally infected dams provides an infective or a protective effect in recipient calves. Our recent findings suggest that this issue is a key point in BLV transmission in very young calves. Based on this, the aim of the present study was to determine the effect of the spray-drying treatment of colostrum on BLV infectivity. The treatment was done on scale-down conditions, using fresh colostrum from BLV-negative cows spiked with infective BLV. Residual infectivity was tested in susceptible lambs. Lambs inoculated with colostrum spiked with BLV-infected cells or cell-free BLV showed evidence of infection 60 d after inoculation, whereas none of the lambs inoculated with spray-dried colostrum showed evidence of infection 60 d after inoculation. These results provide direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious BLV in colostrum. These findings suggest that the risk for BLV transmission could be reduced if milk and colostrum were treated by spray-drying prior to consumption in dairy facilities. The effect of spray-drying on the functional properties and stability of the antibodies present in colostrum under long-term storage should be further investigated.


Assuntos
Colostro/virologia , Leucose Enzoótica Bovina/prevenção & controle , Manipulação de Alimentos/métodos , Liofilização/veterinária , Vírus da Leucemia Bovina/fisiologia , Animais , Anticorpos Antivirais , Bovinos , Leucose Enzoótica Bovina/transmissão , Leucose Enzoótica Bovina/virologia , Feminino , Microbiologia de Alimentos , Leite/virologia , Gravidez
16.
Viruses ; 12(3)2020 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235771

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. However, less than 5% of BLV-infected cattle will develop lymphoma, suggesting that, in addition to viral infection, host genetic polymorphisms might play a role in disease susceptibility. Bovine leukocyte antigen (BoLA)-DRB3 is a highly polymorphic gene associated with BLV proviral load (PVL) susceptibility. Due to the fact that PVL is positively associated with disease progression, it is believed that controlling PVL can prevent lymphoma development. Thus, many studies have focused on the relationship between PVL and BoLA-DRB3. Despite this, there is little information regarding the relationship between lymphoma and BoLA-DRB3. Furthermore, whether or not PVL-associated BoLA-DRB3 is linked to lymphoma-associated BoLA-DRB3 has not been clarified. Here, we investigated whether or not lymphoma-associated BoLA-DRB3 is correlated with PVL-associated BoLA-DRB3. We demonstrate that two BoLA-DRB3 alleles were specifically associated with lymphoma resistance (*010:01 and *011:01), but no lymphoma-specific susceptibility alleles were found; furthermore, two other alleles, *002:01 and *012:01, were associated with PVL resistance and susceptibility, respectively. In contrast, lymphoma and PVL shared two resistance-associated (DRB3*014:01:01 and *009:02) BoLA-DRB3 alleles. Interestingly, we found that PVL associated alleles, but not lymphoma associated alleles, are related with the anti-BLV gp51 antibody production level in cows. Overall, our study is the first to demonstrate that the BoLA-DRB3 polymorphism confers differential susceptibility to BLV-induced lymphoma and PVL.


Assuntos
Leucose Enzoótica Bovina/complicações , Leucose Enzoótica Bovina/virologia , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/fisiologia , Linfoma/veterinária , Polimorfismo Genético , Provírus/genética , Alelos , Animais , Bovinos , Haplótipos , Carga Viral
17.
Vet Res ; 51(1): 4, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931875

RESUMO

Cattle maintaining a low proviral load (LPL) status after bovine leukaemia virus (BLV) infection have been recognized as BLV controllers and non-transmitters to uninfected cattle in experimental and natural conditions. LPL has been associated with host genetics, mainly with the BoLA class II DRB3 gene. The aim of this work was to study the kinetics of BLV and the host response in Holstein calves carrying different BoLA-DRB3 alleles. Twenty BLV-free calves were inoculated with infected lymphocytes. Two calves were maintained uninfected as controls. Proviral load, total leukocyte and lymphocyte counts, anti-BLVgp51 titres and BLVp24 expression levels were determined in blood samples at various times post-inoculation. The viral load peaked at 30 days post-inoculation (dpi) in all animals. The viral load decreased steadily from seroconversion (38 dpi) to the end of the study (178 dpi) in calves carrying a resistance-associated allele (*0902), while it was maintained at elevated levels in calves with *1501 or neutral alleles after seroconversion. Leukocyte and lymphocyte counts and BLVp24 expression did not significantly differ between genetic groups. Animals with < 20 proviral copies/30 ng of DNA at 178 dpi or < 200 proviral copies at 88 dpi were classified as LPL, while calves with levels above these limits were considered to have high proviral load (HPL) profiles. All six calves with the *1501 allele progressed to HPL, while LPL was attained by 6/7 (86%) and 2/6 (33%) of the calves with the *0902 and neutral alleles, respectively. One calf with both *0902 and *1501 developed LPL. This is the first report of experimental induction of the LPL profile in cattle.


Assuntos
Resistência à Doença , Suscetibilidade a Doenças/veterinária , Leucose Enzoótica Bovina/fisiopatologia , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/fisiologia , Carga Viral , Alelos , Animais , Bovinos , Leucose Enzoótica Bovina/genética , Leucose Enzoótica Bovina/virologia , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/imunologia
18.
Arch Virol ; 165(1): 179-183, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31624916

RESUMO

In the present study, we analyzed bovine leukemia virus (BLV) integration sites in under 3 years old with enzootic bovine leukosis (EBL) cattle and compared these to 30 cattle over 3 years old with EBL. BLV proviruses were integrated near CpG islands and into long interspersed nuclear elements more frequently in EBL cattle under 3 years old than in those over 3 years old. These results suggest that cattle under 3 years old with EBL have different BLV provirus integration sites from those of cattle over 3 years old with EBL, and the BLV provirus integration site may represent one factor contributing to early onset of EBL.


Assuntos
Leucose Enzoótica Bovina/virologia , Vírus da Leucemia Bovina/fisiologia , Integração Viral , Fatores Etários , Animais , Bovinos , Ilhas de CpG , Elementos Nucleotídeos Longos e Dispersos , RNA Viral/genética
19.
Viruses ; 11(12)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835517

RESUMO

Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia viruses, is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. The transmembrane subunit of the BLV envelope glycoprotein, gp30, contains three completely conserved YXXL sequences that fit an endocytic sorting motif. The two N-terminal YXXL sequences are reportedly critical for viral infection. However, their actual function in the viral life cycle remains undetermined. Here, we identified the novel roles of each YXXL sequence. Syncytia formation ability was upregulated by a single mutation of the tyrosine (Tyr) residue in any of the three YXXL sequences, indicating that each YXXL sequence is independently able to regulate the fusion event. The alteration resulted from significantly high expression of gp51 on the cell surface, thereby decreasing the amount of gp51 in early endosomes and further revealing that the three YXXL sequences are independently required for internalization of the envelope (Env) protein, following transport to the cell surface. Moreover, the 2nd and 3rd YXXL sequences contributed to Env protein incorporation into the virion by functionally distinct mechanisms. Our findings provide new insights regarding the three YXXL sequences toward the BLV viral life cycle and for developing new anti-BLV drugs.


Assuntos
Motivos de Aminoácidos , Membrana Celular/metabolismo , Membrana Celular/virologia , Interações Hospedeiro-Patógeno , Vírus da Leucemia Bovina/fisiologia , Fusão de Membrana , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Células Cultivadas , Imunofluorescência , Expressão Gênica , Humanos , Mutação , Transporte Proteico , Proteínas do Envelope Viral/química , Ligação Viral , Liberação de Vírus
20.
Vet Res ; 50(1): 102, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783914

RESUMO

Bovine leukemia virus (BLV) infects cattle and causes serious problems for the cattle industry, worldwide. Vertical transmission of BLV occurs via in utero infection and ingestion of infected milk and colostrum. The aim of this study was to clarify whether milk is a risk factor in BLV transmission by quantifying proviral loads in milk and visualizing the infectivity of milk. We collected blood and milk from 48 dams (46 BLV seropositive dams and 2 seronegative dams) from seven farms in Japan and detected the BLV provirus in 43 blood samples (89.6%) but only 22 milk samples (45.8%) using BLV-CoCoMo-qPCR-2. Although the proviral loads in the milk tended to be lower, a positive correlation was firstly found between the proviral loads with blood and milk. Furthermore, the infectivity of milk cells with BLV was visualized ex vivo using a luminescence syncytium induction assay (LuSIA) based on CC81-GREMG cells, which form syncytia expressing enhanced green fluorescent protein (EGFP) in response to BLV Tax and Env expressions when co-cultured with BLV-infected cells. Interestingly, in addition to one BLV-infected dam with lymphoma, syncytia with EGFP fluorescence were observed in milk cells from six BLV-infected, but healthy, dams by an improved LuSIA, which was optimized for milk cells. This is the first report demonstrating the infectious capacity of cells in milk from BLV-infected dams by visualization of BLV infection ex vivo. Thus, our results suggest that milk is a potential risk factor for BLV vertical spread through cell to cell transmission.


Assuntos
Leucose Enzoótica Bovina/transmissão , Vírus da Leucemia Bovina/fisiologia , Leite/virologia , Provírus/fisiologia , Carga Viral/veterinária , Animais , Bovinos , Feminino , Japão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...