Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.026
Filtrar
1.
Sci Rep ; 14(1): 15833, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982112

RESUMO

Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.


Assuntos
Cucurbitaceae , Secas , Doenças das Plantas , Doenças das Plantas/virologia , Cucurbitaceae/virologia , Cucumovirus/fisiologia , Cucumovirus/patogenicidade , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Água/metabolismo
2.
Plant Cell Rep ; 43(8): 197, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014054

RESUMO

Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.


Assuntos
Resistência à Doença , Doenças das Plantas , Vírus de Plantas , Plantas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Doenças das Plantas/virologia , Resistência à Doença/genética , Plantas/virologia , Plantas/metabolismo , Interações Hospedeiro-Patógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Rep ; 43(7): 177, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898307

RESUMO

KEY MESSAGE: Recently published high-quality reference genome assemblies indicate that, in addition to RDR1-deficiency, the loss of several key RNA silencing-associated genes may contribute to the hypersusceptibility of Nicotiana benthamiana to viruses.


Assuntos
Nicotiana , Doenças das Plantas , Interferência de RNA , Nicotiana/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Doenças das Plantas/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Sci ; 346: 112165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925477

RESUMO

Agriculture and global food security encounter significant challenges due to viral threats. In the following decades, several molecular studies have focused on discovering biosynthetic pathways of numerous defensive and signaling compounds, as key regulators of plant interactions, either with viruses or their associated vectors. Nevertheless, the complexities of specialized metabolites mediated plant-virus-vector tripartite viewpoint and the identification of their co-evolutionary crossroads toward antiviral defense system, remain elusive. The current study reviews the various roles of plant-specialized metabolites (PSMs) and how plants use these metabolites to defend against viruses. It discusses recent examples of specialized metabolites that have broad-spectrum antiviral properties. Additionally, the study presents the co-evolutionary basis of metabolite-mediated plant-virus-insect interactions as a potential bioinspired approach to combat viral threats. The prospects also show promising metabolic engineering strategies aimed at discovering a wide range of PSMs that are effective in fending off viruses and their related vectors. These advances in understanding the potential role of PSMs in plant-virus interactions not only serve as a cornerstone for developing plant antiviral systems, but also highlight essential principles of biological control.


Assuntos
Doenças das Plantas , Vírus de Plantas , Plantas , Vírus de Plantas/fisiologia , Plantas/virologia , Plantas/metabolismo , Doenças das Plantas/virologia , Animais , Interações Hospedeiro-Patógeno , Evolução Biológica
5.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885273

RESUMO

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , Morfogênese
6.
PLoS Biol ; 22(5): e3002626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728373

RESUMO

All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.


Assuntos
Doenças das Plantas , Vírus de Plantas , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Doenças das Plantas/virologia , Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Genoma Viral , Interações Hospedeiro-Patógeno
7.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695734

RESUMO

Members of the family Fimoviridae are plant viruses with a multipartite negative-sense enveloped RNA genome (-ssRNA), composed of 4-10 segments comprising 12.3-18.5 kb in total, within quasi-spherical virions. Fimoviruses are transmitted to plants by eriophyid mites and induce characteristic cytopathologies in their host plants, including double membrane-bound bodies in the cytoplasm of virus-infected cells. Most fimoviruses infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the ICTV Report on the family Fimoviridae, which is available at ictv.global/report/fimoviridae.


Assuntos
Genoma Viral , Doenças das Plantas , Vírus de Plantas , Doenças das Plantas/virologia , Animais , Vírus de Plantas/genética , Vírus de Plantas/classificação , Vírus de Plantas/fisiologia , RNA Viral/genética , Vírion/ultraestrutura , Plantas/virologia , Vírus de RNA de Sentido Negativo/genética , Vírus de RNA de Sentido Negativo/classificação , Ácaros/virologia , Filogenia
9.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
10.
Trends Microbiol ; 32(7): 620-621, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719702

RESUMO

The intimate relationships between plants and fungi provide an opportunity for the shuttling of viruses. Dai et al. recently discovered that a virus undergoes cross-kingdom transmission, and naturally spreads to both plant and fungal populations. This finding expands our understanding of viral host range, evolution, transmission, and disease management.


Assuntos
Fungos , Especificidade de Hospedeiro , Doenças das Plantas , Plantas , Plantas/microbiologia , Plantas/virologia , Fungos/fisiologia , Fungos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Micovírus/fisiologia , Micovírus/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/genética , Interações Hospedeiro-Patógeno
11.
Microbiol Spectr ; 12(7): e0351323, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785434

RESUMO

Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.


Assuntos
Citrus sinensis , MicroRNAs , Doenças das Plantas , Proteínas Virais , MicroRNAs/metabolismo , MicroRNAs/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Citrus sinensis/virologia , Citrus sinensis/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Processamento Pós-Transcricional do RNA , Citrus/virologia , Citrus/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética
12.
Viruses ; 16(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675860

RESUMO

In 1929, it was reported that yellowing symptoms caused by a tobacco mosaic virus (TMV) yellow mosaic isolate were suppressed in tobacco plants that were systemically infected with a TMV light green isolate. Similar to vaccination, the phenomenon of cross-protection involves a whole plant being infected with an attenuated virus and involves the same or a closely related virus species. Therefore, attenuated viruses function as biological control agents. In Japan, many studies have been performed on cross-protection. For example, the tomato mosaic virus (ToMV)-L11A strain is an attenuated isolate developed by researchers and shows high control efficiency against wild-type ToMV in commercial tomato crops. Recently, an attenuated isolate of zucchini yellow mosaic virus (ZYMV)-2002 was developed and registered as a biological pesticide to control cucumber mosaic disease. In addition, attenuated isolates of pepper mild mottle virus (PMMoV), cucumber mosaic virus (CMV), tobacco mild green mosaic virus (TMGMV), melon yellow spot virus (MYSV), and watermelon mosaic virus (WMV) have been developed in Japan. These attenuated viruses, sometimes called plant vaccines, can be used not only as single vaccines but also as multiple vaccines. In this review, we provide an overview of studies on attenuated plant viruses developed in Japan. We also discuss the application of the attenuated strains, including the production of vaccinated seedlings.


Assuntos
Doenças das Plantas , Vírus de Plantas , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Japão , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/classificação , Agentes de Controle Biológico , Vírus do Mosaico do Tabaco/genética , Proteção Cruzada , Vacinas Atenuadas , Solanum lycopersicum/virologia , Vacinas Virais/imunologia
13.
PLoS Biol ; 22(4): e3002600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662792

RESUMO

The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.


Assuntos
Nicotiana , Doenças das Plantas , Proteínas do Movimento Viral em Plantas , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Vírus de RNA/genética , Vírus de RNA/fisiologia , Vírus de RNA/metabolismo , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/patogenicidade , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , RNA Viral/genética , RNA Viral/metabolismo , Genoma Viral , Floema/virologia , Floema/metabolismo
14.
Phytopathology ; 114(5): 1126-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451582

RESUMO

Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.


Assuntos
Beta vulgaris , Doenças das Plantas , Vírus de Plantas , Vírus Satélites , Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus Satélites/genética , Vírus Satélites/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , RNA Viral/genética , Raízes de Plantas/virologia , Genoma Viral/genética , Microbiologia do Solo
15.
Pest Manag Sci ; 80(7): 3684-3690, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459962

RESUMO

BACKGROUND: The Southern rice black-streaked dwarf virus (SRBSDV) transmitted by Sogatella furcifera constitutes a threat to sustainable rice production. However, most rice varieties are highly vulnerable to SRBSDV, whereas the occurrence of the viral disease varies significantly under field conditions. This study aimed to evaluate the potential of rice varietal resistance to S. furcifera in reducing SRBSDV transmission. RESULTS: Among the five rice varieties, Zhongzheyou8 and Deyou108 exhibited high resistance to S. furcifera, Baixiangnuo33 was susceptible, and TN1 and Diantun502 were highly susceptible. The S. furcifera generally showed non-preference for and low feeding on the Zhongzheyou8 and Deyou108 plants, which may explain the resistance of these varieties to S. furcifera. Transmission of SRBSDV by S. furcifera was significantly impaired on the resistant varieties, both inoculation and acquisition rates were much lower on Zhongzheyou8 than on TN1. The short durations of S. furcifera salivation and phloem-related activities and the low S. furcifera feeding amount may explain the reduced SRBSDV inoculation and acquisition rates associated with Zhongzheyou8. Spearman's rank correlation revealed a significant negative correlation between S. furcifera resistance and SRBSDV transmission among the tested varieties. CONCLUSION: The results indicate that rice varietal resistance to the vector S. furcifera hinders SRBSDV transmission, which is largely associated with the host plant selection and feeding behaviors of the vector. The current findings shed light on the management of the SRBSDV viral disease through incorporation of S. furcifera resistant rice varieties in the management protocol. © 2024 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Doenças das Plantas , Oryza/virologia , Doenças das Plantas/virologia , Animais , Hemípteros/virologia , Hemípteros/fisiologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Resistência à Doença , Reoviridae/fisiologia , Vírus de Plantas/fisiologia
17.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330080

RESUMO

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Assuntos
Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Reoviridae , Tenuivirus , Proteínas Virais , Oryza/virologia , Oryza/imunologia , Oryza/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Tenuivirus/fisiologia , Tenuivirus/patogenicidade , Vírus de Plantas/fisiologia , Fator de Ligação a CCAAT/metabolismo , Fator de Ligação a CCAAT/genética , Resistência à Doença/genética
18.
Phytopathology ; 114(6): 1276-1288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330173

RESUMO

Mathematical models are widely used to understand the evolution and epidemiology of plant pathogens under a variety of scenarios. Here, we used this approach to analyze the effects of different traits intrinsic and extrinsic to plant-virus interactions on the dynamics of virus pathotypes in genetically heterogeneous plant-virus systems. For this, we propose an agent-based epidemiological model that includes epidemiologically significant pathogen life-history traits related to virulence, transmission, and survival in the environment and allows for integrating long- and short-distance transmission, primary and secondary infections, and within-host pathogen competition in mixed infections. The study focuses on the tobamovirus-pepper pathosystem. Model simulations allowed us to integrate pleiotropic effects of resistance-breaking mutations on different virus life-history traits into the net costs of resistance breaking, allowing for predictions on multiyear pathotype dynamics. We also explored the effects of two control measures, the use of host resistance and roguing of symptomatic plants, that modify epidemiological attributes of the pathogens to understand how their populations will respond to evolutionary pressures. One major conclusion points to the importance of pathogen competition within mixed-infected hosts as a component of the overall fitness of each pathogen that, thus, drives their multiyear dynamics.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas , Doenças das Plantas/virologia , Tobamovirus/genética , Tobamovirus/fisiologia , Tobamovirus/patogenicidade , Capsicum/virologia , Modelos Teóricos , Virulência , Modelos Biológicos , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Coinfecção/virologia , Resistência à Doença/genética
19.
Plant Dis ; 108(6): 1793-1798, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38301219

RESUMO

Plants of the genus Lavandula are thought to be rarely infected by viruses. To date, only alfalfa mosaic virus, cucumber mosaic virus, tobacco mosaic virus, and tomato spotted wilt virus have been reported in this host. In this study, we identified for the first time raspberry ringspot virus (RpRSV) and phlox virus M (PhlVM) in lavender using herbaceous indexing, enzyme-linked immunosorbent assay, and high-throughput sequencing. Nearly complete genome sequences for both viruses were determined. Phylogenetic and serological characterizations suggest that the obtained RpRSV isolate is a raspberry strain. A preliminary survey of 166 samples indicated RpRSV was spread only in the lavender cultivar 'Grosso', while PhlVM was detected in multiple lavender cultivars. Although RpRSV raspberry strain may have spread throughout Auckland and nearby areas in New Zealand, it is very likely restricted to the genus Lavandula or even to the cultivar 'Grosso' due to the absence or limited occurrence of the nematode vector. Interestingly, all infected lavender plants, regardless of their infection status (by RpRSV, PhlVM, or both) were asymptomatic. RpRSV is an important virus that infects horticultural crops including grapevine, cherry, berry fruits, and rose. It remains on the list of regulated pests in New Zealand. RpRSV testing is mandatory for imported Fragaria, Prunus, Ribes, Rosa, Rubus, and Vitis nursery stock and seeds for sowing, while this is not required for Lavandula importation. Our study revealed that lavender could play a role not only as a reservoir but also as an uncontrolled import pathway of viruses that pose a threat to New Zealand's primary industries.


Assuntos
Lavandula , Doenças das Plantas , Lavandula/virologia , Lavandula/química , Doenças das Plantas/virologia , Nova Zelândia , Filogenia , Genoma Viral/genética , Nepovirus/genética , Nepovirus/isolamento & purificação , Nepovirus/fisiologia , Nepovirus/classificação , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia
20.
Trends Plant Sci ; 29(7): 715-717, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38331684

RESUMO

Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Ácido Salicílico , Ácido Salicílico/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Imunidade Inata , Interferência de RNA , Plantas/imunologia , Plantas/virologia , Vírus de Plantas/fisiologia , Células-Tronco/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...