Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 429(18): 2816-2824, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754374

RESUMO

Viral tyrosine phosphatases such as VH1 from Vaccinia and Variola virus are recognized as important effectors of host-pathogen interactions. While proteins sharing sequence to VH1 have been identified in other viruses, their structural and functional characterization is not known. In this work, we determined the crystal structure of the VH1 homolog in the Orf virus, herein named OH1. Similarly to Variola and Vaccinia VH1, the structure of OH1 shows a dimer with the typical dual-specificity phosphatase fold. In contrast to VH1, the OH1 dimer is covalently stabilized by a disulfide bond involving residue Cys15 in the N-terminal helix alpha-1 of both monomers, and Cys15 is a conserved residue within the Parapoxvirus genus. The in vitro functional characterization confirms that OH1 is a dual-specificity phosphatase and reveals its ability to dephosphorylate phosphatidylinositol 3,5-bisphosphate, a new activity potentially relevant in phosphoinositide recycling during virion maturation.


Assuntos
Vírus do Orf/enzimologia , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Cristalografia por Raios X , Dissulfetos/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
2.
Virus Genes ; 53(3): 400-409, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28190135

RESUMO

The Orf virus 050 (ORFV050) gene is located in the core region of the ORFV genome. It is similar to Vaccinia virus (VV) Copenhagen L4R, and encodes the DNA-binding virion core protein VP8, which has structures similar to the VV P25K core protein and may undergo similar proteolytic processing during virus assembly. Three conserved Ala-Gly-X motifs at putative cleavage sites were identified in ORFV050. To investigate the proteolysis of ORFV050 and its participation in viral assembly, full-length and site-directed mutant ORFV050 recombinant proteins were constructed and expressed. Two distinct protein bands of 28.5 and 25 kDa were detected in the infected cells using anti-ORFV050 polyclonal antiserum. A potential cleavage site was identified at amino acids 30-32 of ORFV050. Mutation of AG/A to (R) in ORFV050 abolished the process of proteolysis. ORFV050 is a late gene synthesized during viral replication in the host cytoplasm. According to these results, we conclude that ORFV050 undergoes proteolysis and plays an important role in viral assembly.


Assuntos
Genes Virais/genética , Vírus do Orf/enzimologia , Vírus do Orf/genética , Proteólise , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticorpos Antivirais , Linhagem Celular , Citoplasma/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos , Ectima Contagioso/virologia , Regulação Viral da Expressão Gênica , Peso Molecular , Mutação , Vírus do Orf/efeitos dos fármacos , Vírus do Orf/fisiologia , Proteínas Recombinantes de Fusão/genética , Rifampina/farmacologia , Alinhamento de Sequência , Análise de Sequência , Ovinos , Vaccinia virus/genética , Proteínas do Core Viral/genética , Proteínas do Core Viral/fisiologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Replicação Viral
3.
Vet Microbiol ; 156(1-2): 72-80, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22074858

RESUMO

Thirteen orf virus (ORFV) isolates from natural outbreaks in sheep and goats belonging to different geographical regions of India were analysed on the basis of ORF108 (a homologue of poxviral A32 gene), which is known to encode for ATPase and involved in virion DNA packaging. Comparative sequence analysis of ATPase proteins revealed highly conserved N-terminal region with five different motifs [Walker A, Walker B, A32L specific motifs (III and IV) and a novel AYDG (motif-V)] among all poxviruses and divergent carboxyl terminus with either single or double RGD sequences among all Indian ORFV isolates. A homology model and secondary structure predictions of N-terminal region of ORFV A32 revealed that most of the poxviruses including ORFV ATPase protein belong to a distinct clade of the HerA/FtsK super family of DNA packaging proteins. Despite differences in host cell specificity and poxvirus infections among animals, DNA packaging motor domain of poxviruses presumed to share remarkable similarities as indicated by the presence of conserved ATPase motifs in the present investigation. The study also indicated the circulation of heterogeneous strains of ORFV in India and possibilities of differentiation of ORFV strains based on C-terminal heterogeneity.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Ectima Contagioso/virologia , Doenças das Cabras/virologia , Vírus do Orf/enzimologia , Vírus do Orf/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Empacotamento do DNA , Ectima Contagioso/epidemiologia , Heterogeneidade Genética , Cabras , Índia , Modelos Moleculares , Dados de Sequência Molecular , Vírus do Orf/classificação , Vírus do Orf/isolamento & purificação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ovinos
4.
Protein Expr Purif ; 79(2): 210-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21540113

RESUMO

Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity.


Assuntos
Adenosina Trifosfatases/genética , Ectima Contagioso/virologia , Vírus do Orf , Proteínas Recombinantes/genética , Doenças dos Ovinos/virologia , Ovinos/virologia , Proteínas Virais/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos/genética , Animais , Clonagem Molecular , Escherichia coli , Humanos , Hidrólise , Dados de Sequência Molecular , Vírus do Orf/química , Vírus do Orf/enzimologia , Vírus do Orf/genética , Plasmídeos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Taiwan , Transformação Bacteriana , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
5.
Arch Virol ; 155(10): 1701-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20652336

RESUMO

Nucleotide sequence analysis has indicated that the A32L gene of orf virus can encode an ATPase (Chan et al. in Gene 432:44-53, 2009). In this work, we cloned the A32L gene into a prokaryotic expression vector, and the recombinant protein was expressed and purified. The antigenicity of recombinant ATPase was examined by immunoblotting, and its identity was confirmed by mass spectrometry. The ATP hydrolysis function of the purified recombinant protein was examined, and our results showed that it exhibited the ATPase activity. Similar to other viral ATPases, the ATPase of orf virus remained active in the presence of different divalent ions; nevertheless, unlike other viral ATPases, our recombinant ATPase exhibited similar enzymatic activity in reaction buffers of different pH.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Vírus do Orf/enzimologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Adenosina Trifosfatases/química , Animais , Western Blotting , Cátions Bivalentes/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Virais/química
6.
J Gen Virol ; 83(Pt 5): 1043-1048, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11961258

RESUMO

The present study is the first report on the functional activity of a parapoxvirus-encoded dUTPase. The dUTPase gene of the attenuated orf virus (ORFV), strain D1701, was expressed as a bacterial thioredoxin fusion protein. In vitro assays showed that ORFV dUTPase was highly specific for dUTP as substrate. The enzyme was active over a broad pH range (pH 6.0-9.0), with maximal enzymatic activity at pH 7.0 in the presence of Mg(2+) cations. Kinetic studies of the recombinant ORFV dUTPase revealed an apparent K(m) of 4.0 microM, which is more similar to that of the mammalian or African swine fever virus enzyme than to the K(m) of vaccinia virus dUTPase. Enzyme activity was also found with purified ORFV particles, indicating its virion association.


Assuntos
Vírus do Orf/enzimologia , Pirofosfatases/genética , Nucleotídeos de Desoxiuracil/metabolismo , Vírus do Orf/genética
7.
J Gen Virol ; 77 ( Pt 7): 1563-8, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8758000

RESUMO

Degenerate oligonucleotides representing conserved regions of various DNA polymerases hybridized to a region located 26 kb from the left end of the orf virus (OV) strain NZ-2 genome. DNA sequence analysis of this region revealed a 3024 bp open reading frame able to encode a protein with 56 percent amino acid identity to the DNA polymerase of vaccinia virus (VAC) and with significant homology to other DNA polymerases. Early transcripts derived from the open reading frame were detected in RNA purified from OV-infected cells, and 5' ends were mapped to a region 8-19 nt downstream from an A/T-rich sequence that resembles VAC early promoters. Unlike the VAC gene, the OV DNA polymerase makes almost exclusive use of G/C coding options. Attempts to substitute the activity of the OV DNA polymerase for its VAC counterpart were unsuccessful. This may indicate that the OV DNA polymerase is incompatible with VAC accessory proteins.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Vírus do Orf/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA Viral , Dados de Sequência Molecular , Vírus do Orf/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica
8.
Virology ; 206(1): 203-15, 1995 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-7831775

RESUMO

Vaccinia virus (VV) and Shope fibroma virus (SFV), representatives of the orthopox and leporipox genera, respectively, encode type I DNA topoisomerases. Here we report that the 957-nt F4R open reading frame of orf virus (OV), a representative of the parapox genus, is predicted to encode a 318-aa protein with extensive homology to these enzymes. The deduced amino acid sequence of F4R has 54.7 and 50.6% identity with the VV and SFV enzymes, respectively. One hundred forty amino acids are predicted to be conserved in all three proteins. The F4R protein was expressed in Escherichia coli under the control of an inducible T7 promoter, partially purified, and shown to be a bona fide type I topoisomerase. Like the VV enzyme, the OV enzyme relaxed negatively supercoiled DNA in the absence of divalent cations or ATP and formed a transient covalent intermediate with cleaved DNA that could be visualized by SDS-PAGE. Both the noncovalent and covalent protein/DNA complexes could be detected in an electrophoretic mobility shift assay. The initial PCR used to prepare expression constructs yielded a mutant allele of the OV topoisomerase with a G-A transition at nt 677 that was predicted to replace a highly conserved Tyr residue with a Cys. This allele directed the expression of an enzyme which retained noncovalent DNA binding activity but was severely impaired in DNA cleavage and relaxation. Incubation of pUC19 DNA with the wild-type OV or VV enzyme yielded an indistinguishable set of DNA cleavage fragments, although the relative abundance of the fragments differed for the two enzymes. Using a duplex oligonucleotide substrate containing the consensus site for the VV enzyme, we demonstrated that the OV enzyme also cleaved efficiently immediately downstream of the sequence CCCTT.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Vírus do Orf/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Topoisomerases Tipo I/genética , DNA Viral , Escherichia coli/genética , Dados de Sequência Molecular , Mutação Puntual , Homologia de Sequência de Aminoácidos , Vaccinia virus/enzimologia
9.
Virology ; 172(2): 665-8, 1989 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-2678731

RESUMO

The nucleotide sequence of a near-terminal region of orf virus DNA was determined. Examination of the sequence revealed an open reading frame encoding a peptide with significant amino acid homology to the pseudoprotease domains recently identified in a number of retroviruses including mouse mammary tumor virus, simian Mason-Pfizer virus, maedi-visna virus, and equine infectious anaemia virus. The orf virus pseudoprotease shares up to 28% amino acid homology with retroviral pseudoproteases and appears to be a discrete transcriptional unit rather than a subunit of a larger polypeptide as is the case in retroviruses. The sharing of amino acid composition across such wide taxonomic boundaries suggests that this polypeptide has a functional significance in both retroviruses and poxviruses.


Assuntos
DNA Viral/genética , Vírus do Orf/genética , Peptídeo Hidrolases/genética , Poxviridae/genética , Retroviridae/enzimologia , Animais , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Vírus do Orf/enzimologia , Retroviridae/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...