Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(1): 40-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472073

RESUMO

Bud dormancy of plants has traditionally been explained either by physiological growth arresting conditions in the bud or by unfavourable environmental conditions, such as non-growth-promoting low air temperatures. This conceptual dichotomy has provided the framework also for developing process-based plant phenology models. Here, we propose a novel model that in addition to covering the classical dichotomy as a special case also allows the quantification of an interaction of physiological and environmental factors. According to this plant-environment interaction suggested conceptually decades ago, rather than being unambiguous, the concept of "non-growth-promoting low air temperature" depends on the dormancy status of the plant. We parameterized the model with experimental results of growth onset for seven boreal plant species and found that based on the strength of the interaction, the species can be classified into three dormancy types, only one of which represents the traditional dichotomy. We also tested the model with four species in an independent experiment. Our study suggests that interaction of environmental and physiological factors may be involved in many such phenomena that have until now been considered simply as plant traits without any considerations of effects of the environmental factors.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Dormência de Plantas , Temperatura Baixa , Fragaria/fisiologia , Hypericum/fisiologia , Fotoperíodo , Fenômenos Fisiológicos Vegetais , Vaccinium myrtillus/fisiologia , Vaccinium vitis-Idaea/fisiologia
2.
Plant Physiol Biochem ; 134: 40-52, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30219502

RESUMO

Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperatures and higher solar radiation towards the top of hummocks suffered greater photoinhibition than those at the base of hummocks. Epidermal UV-screening was highest in upper-hummock leaves, particularly during winter when lower leaves were beneath the snowpack. There was also a negative relationship between indices of flavonols and anthocyanins across all leaves suggesting fine-tuning of flavonoid composition for screening vs. antioxidant activity in response to temperature and irradiance. However, the positive correlation between the maximum quantum yield of photosystem II photochemistry (Fv/Fm) and flavonol accumulation in upper hummock leaves during dehardening did not confer on them any greater cross-protection than would be expected from the general relationship of Fv/Fm with temperature and irradiance (throughout the hummocks). Irrespective of timing of snow-melt, photosynthesis fully recovered in all leaves, suggesting that V. vitis-idaea has the potential to exploit the continuing trend for longer growing seasons in central Finland without incurring significant impairment from reduced duration of snow cover.


Assuntos
Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Raios Ultravioleta , Vaccinium vitis-Idaea/fisiologia , Vaccinium vitis-Idaea/efeitos da radiação , Flavonoides/metabolismo , Florestas , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/metabolismo , Neve , Solo , Temperatura , Fatores de Tempo
3.
Ecotoxicology ; 26(7): 966-980, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28624857

RESUMO

The aim of this study was to determine the concentrations of heavy metals (Cd, Pb, Zn, Fe, and Mn) in soil, and their bioavailability and bioaccumulation in Vaccinium myrtillus L. and Vaccinium vitis-idaea L. organs. Analysis also concerned the physiological responses of these plants from three polluted sites (immediate vicinity of a zinc smelter in Miasteczko Slaskie, ArcelorMittal Poland S.A. iron smelter in Dabrowa Górnicza-Losien, and Jaworzno III power plant in Jaworzno) and one pseudo-control site (Pazurek nature reserve in Jaroszowiec Olkuski). All of the sites are situated in the southern parts of Poland in the Slaskie or Malopolskie provinces. The contents of proline, non-protein thiols, glutathione, ascorbic acid, and the activity of superoxide dismutase and guaiacol peroxidase in the leaves of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. were measured. In soil, the highest levels of Cd, Pb, and Zn (HNO3 extracted and CaCl2 extracted) were detected at the Miasteczko Slaskie site. At all sites a several times lower concentration of the examined metals was determined in the fraction of soil extracted with CaCl2. Much higher Cd, Pb, Zn and Fe concentrations were found in V. myrtillus and V. vitis-idaea grown at the most polluted site (located near the zinc smelter) in comparison with cleaner areas; definitely higher bioaccumulation of these metals was found in lingonberry organs. Additionally, we observed a large capability of bilberry to accumulate Mn. Antioxidant response to heavy metal stress also differed between V. myrtillus and V. vitis-idaea. In V. myrtillus we found a positive correlation between the level of non-protein thiols and Cd and Zn concentrations, and also between proline and these metals. In V. vitis-idaea leaves an upward trend in ascorbic acid content and superoxide dismutase activity accompanied an increase in Cd, Pb, and Zn concentrations. At the same time, the increased levels of all tested metals in the leaves of V. vitis-idaea were accompanied by a decreased activity of guaiacol peroxidase. In both species increased Mn accumulation caused a decrease in antioxidant response.


Assuntos
Monitoramento Ambiental , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Vaccinium myrtillus/fisiologia , Vaccinium vitis-Idaea/fisiologia , Metais Pesados/análise , Polônia , Poluentes do Solo/análise
4.
PLoS One ; 10(8): e0135732, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26285206

RESUMO

It has recently been proposed that microrefugia played an important role in species survival during past climate change events. However, the current distributions of microrefugia remain largely unknown. Wind-hole sites are areas affected by preferential flows of cool air generated in interstitial spaces created by rock fragments or colluvia. Alpine plant species occurring in lowland wind-hole sites isolated from alpine zones may be relicts of the last glacial period. Hokkaido, northern Japan, is known to contain many wind-hole sites in which alpine plant species can occur. Here we surveyed 55 wind-hole sites in the Kitami region, eastern Hokkaido, and observed two alpine plant species (lingonberry, Vaccinium vitis-idaea, and Labrador tea, Rhododendron groenlandicum ssp. diversipilosum var. diversipilosum) in 14 wind-hole sites. Statistical modeling showed that wind-hole sites are likely to occur in areas with high maximum slope angles and volcanic rock cover, and concave surfaces. Our predictions of wind-hole site distributions suggest that such topographic conditions are common in our study area, and that many undiscovered wind-hole sites exist. Ignoring microhabitats may greatly underestimate species distributions in topographically complex regions, and dispersed cool spots may also function as stepping stones and temporal habitats for cold-adapted species. Because these localized unique habitats usually occur in economically unproductive sites, identifying and protecting potential microrefugia (cool spots) would be a robust and cost-effective mitigation of climate change impacts.


Assuntos
Temperatura Baixa , Ecossistema , Adaptação Fisiológica , Mudança Climática , Japão , Modelos Estatísticos , Rhododendron/fisiologia , Vaccinium vitis-Idaea/fisiologia
5.
Glob Chang Biol ; 21(9): 3379-88, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25967156

RESUMO

Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming.


Assuntos
Mudança Climática , Herbivoria , Mamíferos/fisiologia , Tundra , Animais , Regiões Árticas , Biomassa , Ericaceae/fisiologia , Cadeia Alimentar , Aquecimento Global , Noruega , Vaccinium vitis-Idaea/fisiologia
6.
J Plant Res ; 128(3): 437-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773306

RESUMO

Arctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal. In light of these hypotheses, we investigated the biogeographic history of the marginal Japanese populations of the widespread arctic-alpine plant Vaccinium vitis-idaea (Ericaceae), which is bird-dispersed, potentially over long distances. We sequenced three nuclear loci and one plastid DNA region in 130 individuals from 65 localities covering its entire geographic range, with a focus on its marginal populations in Japan. We found a homogenous genetic pattern across its enormous range based on the loci analysed, in contrast to the geographically structured variation found in a previous study of amplified fragment length polymorphisms in this species. However, we found several unique haplotypes in the Japanese populations, excluding the possibility that these marginal populations result from recent southward migration. Thus, even though V. vitis-idaea is efficiently dispersed via berries, our study suggests that its isolated populations in Japan have persisted during several cycles of cold and warm climate during the Pleistocene.


Assuntos
Variação Genética , Vaccinium vitis-Idaea/fisiologia , Animais , Regiões Árticas , Aves , Clima , DNA de Plantas/química , DNA de Plantas/genética , Haplótipos , Japão , Filogeografia , Dispersão Vegetal , Análise de Sequência de DNA , Vaccinium vitis-Idaea/genética
7.
Am J Bot ; 101(9): 1437-46, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25253704

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Most alpine plants in the Northeast United States are perennial and flower early in the growing season, extending their limited growing season. Concurrently, they risk the loss of reproductive efforts to late frosts. Quantifying long-term trends in northeastern alpine flower phenology and late-spring/early-summer frost risk is limited by a dearth of phenology and climate data, except for Mount Washington, New Hampshire (1916 m a.s.l.).• METHODS: Logistic phenology models for three northeastern US alpine species (Diapensia lapponica, Carex bigelowii and Vaccinium vitis-idaea) were developed from 4 yr (2008-2011) of phenology and air temperature measurements from 12 plots proximate to Mount Washington's long-term summit meteorological station. Plot-level air temperature, the logistic phenology models, and Mount Washington's climate data were used to hindcast model yearly (1935-2011) floral phenology and frost damage risk for the focal species.• KEY RESULTS: Day of year and air growing degree-days with threshold temperatures of -4°C (D. lapponica and C. bigelowii) and -2°C (V. vitis-idaea) best predicted flowering. Modeled historic flowering dates trended significantly earlier but the 77-yr change was small (1.2-2.1 d) and did not significantly increase early-flowering risk from late-spring/early-summer frost damage.• CONCLUSIONS: Modeled trends in phenological advancement and sensitivity for three northeastern alpine species are less pronounced compared with lower elevations in the region, and this small shift in flower timing did not increase risk of frost damage. Potential reasons for limited earlier phenological advancement at higher elevations include a slower warming trend and increased cloud exposure with elevation and/or inadequate chilling requirements.


Assuntos
Altitude , Ecossistema , Flores/crescimento & desenvolvimento , Aquecimento Global , Magnoliopsida/fisiologia , Estações do Ano , Temperatura , Carex (Planta)/fisiologia , Clima , Congelamento , Modelos Biológicos , New Hampshire , Desenvolvimento Vegetal , Reprodução , Estresse Fisiológico , Vaccinium vitis-Idaea/fisiologia
8.
Physiol Plant ; 146(4): 460-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22568724

RESUMO

The Arctic is experiencing the greatest climate change in winter, including increases in freeze-thaw cycles that can result in ice encasement of vegetation. Ice encasement can expose plants to hypoxia and greater temperature extremes, but currently the impacts of icing on plants in the field remain little understood. With this in mind, a unique field manipulation experiment was established in heathland in northern Sweden with ice encasement simulated in early March 2008, 2009 and 2010 until natural thaw each spring. In the following summers we assessed the impacts on flowering, bud phenology, shoot growth and mortality and leaf damage (measured by chlorophyll fluorescence and electrolyte leakage) of the three dominant dwarf shrub species Empetrum nigrum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). Two consecutive winters of icing decreased V. vitis-idaea flowering by 57%, while flowering of V. myrtillus and E. nigrum remained unaffected. Vaccinium myrtillus showed earlier budburst but shoot growth for all species was unchanged. Shoot mortality of V. myrtillus and V. vitis-idaea increased after the first year (by 70 and 165%, respectively) and again for V. myrtillus following the third year (by 67%), while E. nigrum shoot mortality remained unaffected, as were chlorophyll fluorescence and electrolyte leakage in all species. Overall, the sub-arctic heathland was relatively tolerant to icing, but the considerable shoot mortality of V. myrtillus contrasting with the general tolerance of E. nigrum suggests plant community structure in the longer term could change if winters continue to see a greater frequency of icing events.


Assuntos
Ericaceae/fisiologia , Vaccinium myrtillus/crescimento & desenvolvimento , Vaccinium myrtillus/fisiologia , Vaccinium vitis-Idaea/fisiologia , Regiões Árticas , Clorofila/análise , Temperatura Baixa , Eletrólitos/análise , Ericaceae/crescimento & desenvolvimento , Flores/fisiologia , Fluorescência , Gelo , Folhas de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Estações do Ano , Suécia , Vaccinium vitis-Idaea/crescimento & desenvolvimento
9.
Physiol Plant ; 145(4): 516-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22182287

RESUMO

The aim of this study was to investigate plant frost hardiness responses to ultraviolet (UV) radiation, since the few results reported are largely contradictory. It was hypothesized that functional adaptation of life forms could explain these contradictions. Dwarf shrubs and tree seedlings, representing both evergreen and deciduous forms, were tested (Vaccinium vitis-idaea, Vaccinium myrtillus, Pinus sylvestris, Betula pubescens and its red form f. rubra). The research was performed in Sodankylä, Northern Finland (67°N), with enhanced UV-B- and UV-A-radiation treatments between 2002 and 2009. Plant frost hardiness was determined using the freeze-induced electrolyte leakage method in early autumn, during the onset of the frost hardening process. Additional physiological variables (malondialdehyde, glutathione, total phenols, C and N contents) were analyzed in V. vitis-idaea to explain the possible responses. These variables did not respond significantly to UV-radiation treatments, but explained the frost hardiness well (r² = 0.678). The main finding was that frost hardiness decreased in the evergreen shrub V. vitis-idaea, particularly with enhanced UV-A radiation. No significant responses were observed with the other plants. Therefore, this study does not support the idea that enhanced UV radiation could increase plant frost hardiness.


Assuntos
Congelamento , Raios Ultravioleta , Vaccinium vitis-Idaea/fisiologia , Adaptação Fisiológica , Vaccinium vitis-Idaea/efeitos da radiação
10.
Physiol Plant ; 140(2): 128-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20497369

RESUMO

Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts.


Assuntos
Adaptação Fisiológica/fisiologia , Ecossistema , Ericaceae/fisiologia , Estações do Ano , Regiões Árticas , Metabolismo dos Carboidratos , Carboidratos/análise , Ericaceae/classificação , Ericaceae/metabolismo , Peroxidação de Lipídeos/fisiologia , Meristema/metabolismo , Meristema/fisiologia , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Neve , Especificidade da Espécie , Temperatura , Vaccinium myrtillus/metabolismo , Vaccinium myrtillus/fisiologia , Vaccinium vitis-Idaea/metabolismo , Vaccinium vitis-Idaea/fisiologia
11.
New Phytol ; 182(2): 359-366, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19320835

RESUMO

The overstorey coniferous trees and understorey ericaceous dwarf shrubs of northern temperate and boreal forests have previously been considered to form mycorrhizas with taxonomically and functionally distinct groups of fungi. Here, we tested the hypothesis that Meliniomyces variabilis and Meliniomyces bicolor, isolated from Piceirhiza bicolorata ectomycorrhizas of pine, can function as ericoid mycorrhizal symbionts with Vaccinium vitis-idaea. We used split-compartment microcosms to measure the reciprocal exchange of (13)C and (15)N between V. vitis-idaea and three fungal isolates in the Hymenoscyphus ericae aggregate isolated from Scots pine ectomycorrhizas (M. variabilis and M. bicolor) or Vaccinium roots (M. variabilis). The extramatrical fungal mycelium of labelled mycorrhizal plants was significantly enriched in (13)C, and the leaves were significantly enriched in (15)N, compared with nonmycorrhizal and nonlabelled controls. * These findings show for the first time that fungi in the H. ericae aggregate, isolated from pine ectomycorrhizas, can transfer C and N and can thus form functional ericoid mycorrhizas in an understorey ericaceous shrub.


Assuntos
Ascomicetos/fisiologia , Carbono/metabolismo , Micorrizas/fisiologia , Nitrogênio/metabolismo , Pinus/metabolismo , Vaccinium vitis-Idaea/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Isótopos de Carbono , Micorrizas/metabolismo , Isótopos de Nitrogênio , Filogenia , Pinus/microbiologia , Folhas de Planta/metabolismo , Vaccinium vitis-Idaea/microbiologia , Vaccinium vitis-Idaea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...