Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.782
Filtrar
1.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825711

RESUMO

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Nanotecnologia , Neoplasias , Vacinas de mRNA , Humanos , Vacinas Anticâncer/imunologia , Nanotecnologia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , COVID-19/prevenção & controle , Adjuvantes de Vacinas , RNA Mensageiro/genética , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia
2.
Front Immunol ; 15: 1355566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835775

RESUMO

Dendritic cell (DC)-based vaccines have emerged as a promising strategy in cancer immunotherapy due to low toxicity. However, the therapeutic efficacy of DC as a monotherapy is insufficient due to highly immunosuppressive tumor environment. To address these limitations of DC as immunotherapeutic agent, we have developed a polymeric nanocomplex incorporating (1) oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) and (2) arginine-grafted bioreducible polymer with PEGylated paclitaxel (APP) to restore antitumor immune surveillance function in tumor milieu and potentiate immunostimulatory attributes of DC vaccine. Nanohybrid complex (oAd/APP) in combination with DC (oAd/APP+DC) induced superior expression level of antitumor cytokines (IL-12, GM-CSF, and interferon gamma) than either oAd/APP or DC monotherapy in tumor tissues, thus resulting in superior intratumoral infiltration of both endogenous and exogenous DCs. Furthermore, oAd/APP+DC treatment led superior migration of DC to secondary lymphoid organs, such as draining lymph nodes and spleen, in comparison with either monotherapy. Superior migration profile of DCs in oAd/APP+DC treatment group resulted in more prolific activation of tumor-specific T cells in these lymphoid organs and greater intratumoral infiltration of T cells. Additionally, oAd/APP+DC treatment led to lower subset of tumor infiltrating lymphocytes and splenocytes being immunosuppressive regulatory T cells than any other treatment groups. Collectively, oAd/APP+DC led to superior induction of antitumor immune response and amelioration of immunosuppressive tumor microenvironment to elicit potent tumor growth inhibition than either monotherapy.


Assuntos
Adenoviridae , Células Dendríticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Paclitaxel , Células Dendríticas/imunologia , Animais , Paclitaxel/farmacologia , Adenoviridae/genética , Camundongos , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Terapia Combinada , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos C57BL , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos
3.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824552

RESUMO

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Assuntos
Vacinas de DNA , Animais , Camundongos , Vacinas de DNA/farmacologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
4.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
5.
Front Immunol ; 15: 1354710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726010

RESUMO

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Assuntos
Vacinas Anticâncer , Melanoma , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas , Humanos , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Melanoma Maligno Cutâneo , Resultado do Tratamento , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem
6.
Front Immunol ; 15: 1404121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720900

RESUMO

Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.


Assuntos
Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos Virais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Cultivadas , Vacinas Anticâncer/imunologia
7.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702343

RESUMO

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos , Terapia Combinada , Vacinas de mRNA/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/administração & dosagem
8.
Front Immunol ; 15: 1389173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745666

RESUMO

Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.


Assuntos
Vacinas Anticâncer , Morte Celular Imunogênica , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Animais , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia
9.
Cancer Immunol Immunother ; 73(7): 129, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744688

RESUMO

Emerging evidence suggests that tumor-specific neoantigens are ideal targets for cancer immunotherapy. However, how to predict tumor neoantigens based on translatome data remains obscure. Through the extraction of ribosome-nascent chain complexes (RNCs) from LLC cells, followed by RNC-mRNA extraction, RNC-mRNA sequencing, and comprehensive bioinformatic analysis, we successfully identified proteins undergoing translatome and exhibiting mutations in the cells. Subsequently, novel antigens identification was analyzed by the interaction between their high affinity and the Major Histocompatibility Complex (MHC). Neoantigens immunogenicity was analyzed by enzyme-linked immunospot assay (ELISpot). Finally, in vivo experiments in mice were conducted to evaluate the antitumor effects of translatome-derived neoantigen peptides on lung cancer. The results showed that ten neoantigen peptides were identified and synthesized by translatome data from LLC cells; 8 out of the 10 neoantigens had strong immunogenicity. The neoantigen peptide vaccine group exhibited significant tumor growth inhibition effect. In conclusion, neoantigen peptide vaccine derived from the translatome of lung cancer exhibited significant tumor growth inhibition effect.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias Pulmonares , Vacinas de Subunidades Antigênicas , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Camundongos , Vacinas Anticâncer/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Humanos , Camundongos Endogâmicos C57BL , Feminino , Imunoterapia/métodos , Linhagem Celular Tumoral , Vacinas de Subunidades Proteicas
10.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764014

RESUMO

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Assuntos
Adjuvantes Imunológicos , Melanoma Experimental , Camundongos Endogâmicos C57BL , Ovalbumina , Probióticos , Animais , Ovalbumina/imunologia , Ovalbumina/química , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Probióticos/farmacologia , Melanoma Experimental/imunologia , Feminino , Células Dendríticas/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Linfócitos T CD4-Positivos/imunologia
11.
Braz J Med Biol Res ; 57: e12874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775545

RESUMO

More attention has been paid to immunotherapy for ovarian cancer and the development of tumor vaccines. We developed a trichostatin A (TSA)-modified tumor vaccine with potent immunomodulating activities that can inhibit the growth of ovarian cancer in rats and stimulate immune cell response in vivo. TSA-treated Nutu-19 cells inactivated by X-ray radiation were used as a tumor vaccine in rat ovarian cancer models. Prophylactic and therapeutic experiments were performed with TSA-modified tumor vaccine in rats. Flow cytometry and ELISpot assays were conducted to assess immune response. Immune cell expression in the spleen and thymus were detected by immunohistochemical staining. GM-CSF, IL-7, IL-17, LIF, LIX, KC, MCP-1, MIP-2, M-CSF, IP-10/CXCL10, MIG/CXCL9, RANTES, IL-4, IFN-γ, and VEGF expressions were detected with Milliplex Map Magnetic Bead Panel immunoassay. TSA vaccination in therapeutic and prophylactic models could effectively stimulate innate immunity and boost the adaptive humoral and cell-mediated immune responses to inhibit the growth and tumorigenesis of ovarian cancer. This vaccine stimulated the thymus into reactivating status and enhanced infiltrating lymphocytes in tumor-bearing rats. The expression of key immunoregulatory factors were upregulated in the vaccine group. The intensities of infiltrating CD4+ and CD8+ T cells and NK cells were significantly increased in the vaccine group compared to the control group (P<0.05). This protection was mainly dependent on the IFN-γ pathway and, to a much lesser extent, by the IL-4 pathway. The tumor cells only irradiated by X-ray as the control group still showed a slight immune effect, indicating that irradiated cells may also cause certain immune antigen exposure, but the efficacy was not as significant as that of the TSA-modified tumor vaccine. Our study revealed the potential application of the TSA-modified tumor vaccine as a novel tumor vaccine against tumor refractoriness and growth. These findings offer a better understanding of the immunomodulatory effects of the vaccine against latent tumorigenesis and progression. This tumor vaccine therapy may increase antigen exposure, synergistically activate the immune system, and ultimately improve remission rates. A vaccine strategy designed to induce effective tumor immune response is being considered for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Ácidos Hidroxâmicos , Neoplasias Ovarianas , Animais , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/prevenção & controle , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Ratos , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Citometria de Fluxo , Linhagem Celular Tumoral , Modelos Animais de Doenças
13.
ACS Nano ; 18(19): 12194-12209, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38689426

RESUMO

In situ vaccines (ISVs) utilize the localized delivery of chemotherapeutic agents or radiotherapy to stimulate the release of endogenous antigens from tumors, thereby eliciting systemic and persistent immune activation. Recently, a bioinspired ISV strategy has attracted tremendous attention due to its features such as an immune adjuvant effect and genetic plasticity. M13 bacteriophages are natural nanomaterials with intrinsic immunogenicity, genetic flexibility, and cost-effectiveness for large-scale production, demonstrating the potential for application in cancer vaccines. In this study, we propose an ISV based on the engineered M13 bacteriophage targeting CD40 (M13CD40) for dendritic cell (DC)-targeted immune stimulation, named H-GM-M13CD40. We induce immunogenic cell death and release tumor antigens through local delivery of (S)-10-hydroxycamptothecin (HCPT), followed by intratumoral injection of granulocyte-macrophage colony stimulating factor (GM-CSF) and M13CD40 to enhance DC recruitment and activation. We demonstrate that this ISV strategy can result in significant accumulation and activation of DCs at the tumor site, reversing the immunosuppressive tumor microenvironment. In addition, H-GM-M13CD40 can synergize with the PD-1 blockade and induce abscopal effects in cold tumor models. Overall, our study verifies the immunogenicity of the engineered M13CD40 bacteriophage and provides a proof of concept that the engineered M13CD40 phage can function as an adjuvant for ISVs.


Assuntos
Bacteriófago M13 , Vacinas Anticâncer , Células Dendríticas , Microambiente Tumoral , Vacinas Anticâncer/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Bacteriófago M13/imunologia , Bacteriófago M13/química , Camundongos , Células Dendríticas/imunologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Antígenos de Neoplasias/imunologia , Humanos
14.
Nat Commun ; 15(1): 3902, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724527

RESUMO

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.


Assuntos
Nanofios , Polímeros , Nanofios/química , Animais , Camundongos , Polímeros/química , Linhagem Celular Tumoral , Gadolínio/química , Gadolínio/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Feminino , Humanos , Vacinação/métodos , Neoplasias/imunologia
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732150

RESUMO

Peptide antigens derived from tumors have been observed to elicit protective immune responses, categorized as either tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). Subunit cancer vaccines incorporating these antigens have shown promise in inducing protective immune responses, leading to cancer prevention or eradication. Over recent years, peptide-based cancer vaccines have gained popularity as a treatment modality and are often combined with other forms of cancer therapy. Several clinical trials have explored the safety and efficacy of peptide-based cancer vaccines, with promising outcomes. Advancements in techniques such as whole-exome sequencing, next-generation sequencing, and in silico methods have facilitated the identification of antigens, making it increasingly feasible. Furthermore, the development of novel delivery methods and a deeper understanding of tumor immune evasion mechanisms have heightened the interest in these vaccines among researchers. This article provides an overview of novel insights regarding advancements in the field of peptide-based vaccines as a promising therapeutic avenue for cancer treatment. It summarizes existing computational methods for tumor neoantigen prediction, ongoing clinical trials involving peptide-based cancer vaccines, and recent studies on human vaccination experiments.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias , Peptídeos , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/prevenção & controle , Peptídeos/imunologia , Peptídeos/química , Vacinas de Subunidades Antigênicas/imunologia , Animais , Ensaios Clínicos como Assunto
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770719

RESUMO

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Assuntos
Algoritmos , Vacinas Anticâncer , Método de Monte Carlo , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Antígenos HLA/imunologia , Antígenos HLA/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Mutação
17.
Int Immunopharmacol ; 134: 112233, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735256

RESUMO

Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/diagnóstico por imagem , Imunoterapia/métodos , Animais , Ultrassonografia/métodos , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microbolhas , Imunoterapia Adotiva/métodos , Terapia Combinada , Terapia por Ultrassom/métodos
18.
Biomaterials ; 309: 122626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795524

RESUMO

The development of manganese oxide-based chemodynamic immunotherapy is emerging as a key strategy against solid tumors. However, the limited efficacy of nanoplatform in inducing efficient tumor therapeutic effects and creating the prominent antitumor immune responses remains a crucial issue. In this study, we construct a novel multifunctional biomimetic nanovaccine comprising manganese oxide-loaded poly(2-diisopropylaminoethyl methacrylate) (MP) nanoparticles and a coating layer of hybrid cell membrane (RHM) derived from manganese oxide-remodeled 4T1 cells and dendritic cells (DCs) (collectively called MP@RHM) for combination chemodynamic immunotherapy. Compared with the nanovaccines coated with the single cell membrane, the MP@RHM nanovaccine highly efficiently activates both DCs and T cells to boost tumor-specific T cell, owing to the synergistic effects of abundant damage-associated molecular patterns, Mn2+, and T cell-stimulating moieties. Upon peritumoral injection, the MP@RHM nanovaccine targets both the tumor site for focused chemodynamic therapy and the lymph nodes for robust tumor-specific T cell priming, thereby achieving highly efficient chemodynamic immunotherapy. Moreover, as a preventive cancer nanovaccine, MP@RHM generates strong immunological memory to inhibit postoperative tumor metastasis and recurrence. Our study findings highlight a promising approach to construct a multifunctional biomimetic nanovaccine for personalized chemodynamic immunotherapy against solid tumors.


Assuntos
Vacinas Anticâncer , Imunoterapia , Compostos de Manganês , Óxidos , Linfócitos T , Compostos de Manganês/química , Animais , Vacinas Anticâncer/imunologia , Óxidos/química , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Feminino , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Materiais Biomiméticos/química , Neoplasias/terapia , Neoplasias/imunologia , Nanovacinas
19.
J Immunother Cancer ; 12(5)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782542

RESUMO

BACKGROUND: Neoantigens can serve as targets for T cell-mediated antitumor immunity via personalized neopeptide vaccines. Interim data from our clinical study NCT03715985 showed that the personalized peptide-based neoantigen vaccine EVX-01, formulated in the liposomal adjuvant, CAF09b, was safe and able to elicit EVX-01-specific T cell responses in patients with metastatic melanoma. Here, we present results from the dose-escalation part of the study, evaluating the feasibility, safety, efficacy, and immunogenicity of EVX-01 in addition to anti-PD-1 therapy. METHODS: Patients with metastatic melanoma on anti-PD-1 therapy were treated in three cohorts with increasing vaccine dosages (twofold and fourfold). Tumor-derived neoantigens were selected by the AI platform PIONEER and used in personalized therapeutic cancer peptide vaccines EVX-01. Vaccines were administered at 2-week intervals for a total of three intraperitoneal and three intramuscular injections. The study's primary endpoint was safety and tolerability. Additional endpoints were immunological responses, survival, and objective response rates. RESULTS: Compared with the base dose level previously reported, no new vaccine-related serious adverse events were observed during dose escalation of EVX-01 in combination with an anti-PD-1 agent given according to local guidelines. Two patients at the third dose level (fourfold dose) developed grade 3 toxicity, most likely related to pembrolizumab. Overall, 8 out of the 12 patients had objective clinical responses (6 partial response (PR) and 2 CR), with all 4 patients at the highest dose level having a CR (1 CR, 3 PR). EVX-01 induced peptide-specific CD4+ and/or CD8+T cell responses in all treated patients, with CD4+T cells as the dominating responses. The magnitude of immune responses measured by IFN-γ ELISpot assay correlated with individual peptide doses. A significant correlation between the PIONEER quality score and induced T cell immunogenicity was detected, while better CRs correlated with both the number of immunogenic EVX-01 peptides and the PIONEER quality score. CONCLUSION: Immunization with EVX-01-CAF09b in addition to anti-PD-1 therapy was shown to be safe and well tolerated and elicit vaccine neoantigen-specific CD4+and CD8+ T cell responses at all dose levels. In addition, objective tumor responses were observed in 67% of patients. The results encourage further assessment of the antitumor efficacy of EVX-01 in combination with anti-PD-1 therapy.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Melanoma , Medicina de Precisão , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Metástase Neoplásica , Medicina de Precisão/métodos , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem
20.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Lipídeos , RNA , Microambiente Tumoral , Animais , Cães , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Glioma/terapia , Glioma/imunologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , RNA/química , RNA/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...