Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.975
Filtrar
1.
Sci Rep ; 14(1): 15262, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961116

RESUMO

Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).


Assuntos
Adjuvantes Imunológicos , Galinhas , Quitosana , Nanopartículas , Doenças das Aves Domésticas , Animais , Galinhas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Nanopartículas/química , Quitosana/química , Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Dióxido de Silício/química , Adjuvantes de Vacinas , Polímeros/química , Portadores de Fármacos/química , Pasteurellaceae/imunologia
2.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977999

RESUMO

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Assuntos
Infecções por Actinomycetales , Vacinas Bacterianas , Modelos Animais de Doenças , Imunidade Humoral , Camundongos Endogâmicos BALB C , Rhodococcus equi , Animais , Rhodococcus equi/imunologia , Rhodococcus equi/genética , Camundongos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Actinomycetales/prevenção & controle , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunidade Celular , Feminino , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/patologia , Carga Bacteriana , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Interferon gama/imunologia , Interferon gama/metabolismo
3.
Vet Ital ; 60(1)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38989625

RESUMO

Staphylococcus aureus, Escherichia coli and Mycoplasma bovis are the most commonly isolated mastitis pathogens. The aim of this study was to evaluate the efficacy of a new mixed vaccine against mastitis caused by  Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis. For this purpose, a mixed inactivated vaccine was administered subcutaneously to 24 heifers as one dose (2 mL) on the 45th day before birth and the second dose 21 days later. In 9 heifers, 2 mL of PBS was administered as placebo instead of vaccine. Then, heifers were divided into 3 groups as 7 vaccinated and 3 unvaccinated animals. Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis were administered to the groups through intramammary route. Three vaccinated heifers were considered the common control without bacteria in all groups. The parameters considered to assess the effect of vaccination were clinical findings, bacterial count in milk, somatic cell count, and antibody titers. Clinical signs were observed only in the unvaccinated placebo group. Bacteria count and somatic cell count in milk increased in vaccinated and unvaccinated heifers. However, this increase was less in vaccinated animals and gradually returned to the normal level. In the unvaccinated heifers, it was ever high. Serum antibody titers were measured before and after vaccination. Antibody titers were high in vaccinated heifers after vaccination and were negative in unvaccinated heifers. In conclusion, the mixed vaccine had beneficial effect against Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis mastitis and stimulated the immune response of vaccinated heifers.


Assuntos
Escherichia coli , Mastite Bovina , Infecções por Mycoplasma , Mycoplasma bovis , Infecções Estafilocócicas , Staphylococcus aureus , Vacinas de Produtos Inativados , Animais , Bovinos , Mycoplasma bovis/imunologia , Feminino , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Staphylococcus aureus/imunologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/imunologia
4.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
5.
Front Cell Infect Microbiol ; 14: 1394070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895731

RESUMO

Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of paratuberculosis (PTB), a chronic intestinal inflammatory disease that causes high economical losses in dairy livestock worldwide. Due to the absence of widely available preventive or therapeutical treatments, new alternative therapies are needed. In this study, the effect of a probiotic alone or in combination with a commercial vaccine has been evaluated in a rabbit model. Vaccination enhanced the humoral response, exerted a training effect of peripheral polymorphonuclear neutrophils (PMNs) against homologous and heterologous stimuli, stimulated the release of pro-inflammatory cytokines by gut-associated lymphoid tissue (GALT) macrophages, and reduced the bacterial burden in GALT as well. However, the administration of the probiotic after vaccination did not affect the PMN activity, increased metabolic demand, and supressed pro-inflammatory cytokines, although humoral response and bacterial burden decrease in GALT was maintained similar to vaccination alone. The administration of the probiotic alone did not enhance the humoral response or PMN activity, and the bacterial burden in GALT was further increased compared to the only challenged group. In conclusion, the probiotic was able to modulate the immune response hampering the clearance of the infection and was also able to affect the response of innate immune cells after vaccination. This study shows that the administration of a probiotic can modulate the immune response pathways triggered by vaccination and/or infection and even exacerbate the outcome of the disease, bringing forward the importance of verifying treatment combinations in the context of each particular infectious agent.


Assuntos
Citocinas , Mycobacterium avium subsp. paratuberculosis , Neutrófilos , Paratuberculose , Probióticos , Vacinação , Animais , Probióticos/administração & dosagem , Paratuberculose/prevenção & controle , Paratuberculose/imunologia , Paratuberculose/microbiologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Coelhos , Neutrófilos/imunologia , Citocinas/metabolismo , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Macrófagos/imunologia , Modelos Animais de Doenças , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Feminino , Imunidade Humoral , Anticorpos Antibacterianos/sangue
6.
Avian Dis ; 68(2): 145-155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885057

RESUMO

Manufacturers of Mycoplasma gallisepticum (MG) modified live vaccines usually recommend a single application at 8 wk of age. This makes 12-16-wk-old layer pullets suitable for challenge studies intended to evaluate these vaccines. Numerous challenge models in different poultry species and ages have been reported. However, there is not an established layer pullet challenge model for this age. The aim of this study is to develop a suitable challenge model in 12-wk-old layer pullets. MG Rlow strain was used as the challenge strain, and its ability to induce clinical signs and lesions in 12-wk-old Hy-Line W-36 layer pullets was evaluated. Three different doses (low, 7.95 × 104 color-changing units [CCU]/bird; medium, 7.95 × 106 CCU/bird; and high, 7.95 × 108 CCU/bird) via three different routes (eye drop, fine spray, and contact infection) were compared and evaluated using different parameters. At 14 days post-challenge, there were no mortalities in any of the groups throughout the study. Layer pullets directly challenged with the high dose via the fine spray route showed the clearest and most consistent results (clinical signs, positive quantitative real-time PCR [qPCR], seroconversion, air sac scoring, and histopathological changes of the tracheal mucosa). Medium and low challenge doses applied via fine spray or eye drop did not show consistent results. Rlow strain was able to spread to the contact infection birds, as confirmed by the positive qPCR results; however, none of the contact-infected birds showed any clinical signs or gross or microscopic lesions. Our results suggest that a high dose (7.95 × 108 CCU/bird) administered through a fine spray route is the model of choice in any future MG vaccine evaluation trials in 12-wk-old layer pullets.


Nota de investigación- Desarrollo y evaluación del modelo de desafío para Mycoplasma gallisepticum en pollitas de postura. Los fabricantes de vacunas vivas modificadas contra Mycoplasma gallisepticum (MG) suelen recomendar una sola aplicación a las ocho semanas de edad. Esto hace que las pollitas de postura de 12 a 16 semanas de edad sean adecuadas para estudios de desafío destinados a evaluar estas vacunas. Se han reportado numerosos modelos de desafío en diferentes especies y edades de aves de corral. Sin embargo, no existe un modelo de desafío establecido para pollitas de postura de esta edad. El objetivo de este estudio fue desarrollar un modelo de desafío adecuado en pollitas ponedoras de 12 semanas de edad. Se utilizó la cepa Rlow de Mycoplasma gallisepticum como cepa de desafío y se evaluó su capacidad para inducir signos clínicos y lesiones en pollitas ponedoras Hy-Line W-36 de 12 semanas de edad. Tres dosis diferentes (baja, 7.95 × 104 unidades de cambio de color [CCU]/ave; media, 7.95 × 106 CCU/ave; y alta, 7.95 × 108 CCU/ave) a través de tres rutas diferentes (gota en el ojo, aerosol con gota fina e infección por contacto) se compararon y evaluaron utilizando diferentes parámetros. A los 14 días posteriores al desafío, no hubo mortalidades en ninguno de los grupos durante todo el estudio. Las pollitas de postura expuestas directamente a la dosis alta a través de la ruta de aerosol con gota fina mostraron los resultados más claros y consistentes (signos clínicos, PCR cuantitativa en tiempo real [qPCR] positiva, seroconversión, puntuación de lesiones en los sacos aéreos y cambios histopatológicos de la mucosa traqueal). Las dosis de desafío medias y bajas aplicadas mediante aerosol con gota fina o gota en el ojo no mostraron resultados consistentes. La cepa Rlow pudo propagarse a las aves infectadas por contacto, como lo confirmaron los resultados positivos de qPCR; sin embargo, ninguna de las aves infectadas por contacto mostró signos clínicos o lesiones macroscópicas o microscópicas. Estos resultados sugieren que una dosis alta (7.95 × 108 CCU/ave) administrada a través de una ruta de aerosol con gota fina es el modelo de elección en cualquier ensayo futuro de evaluación de vacunas para M. gallisepticum en pollitas de postura de 12 semanas de edad.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/microbiologia , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Feminino
7.
Front Immunol ; 15: 1392681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835751

RESUMO

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Doenças dos Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/imunologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/imunologia , Septicemia Hemorrágica/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Vacinação
8.
Int J Mycobacteriol ; 13(2): 178-182, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916389

RESUMO

BACKGROUND: Mycobacterium welchii (Mycobacterium w) vaccine was one of the many strategies used to both treat and prevent coronavirus disease 2019 (COVID-19) infection. We report the results of a retrospective analysis of 15 cases with vaccine-site granulomas after administration of prophylactic Mycobacterium w vaccine as part of a trial for COVID-19 and our experience in managing those cases. METHODS: This was a retrospective analysis of 15 patients with vaccine-site granulomas who were given the vaccine as a prophylactic measure as part of a trial with informed consent. RESULTS: The mean average age of cases was 37 and the male-to-female ratio was 1:0.87. All of the patients developed erythematous tender nodules over the injection sites within a month of receiving the inoculations. Mycobacterial cultures and cartridge-based nucleic acid amplification tests yielded negative results. Skin biopsy revealed granulomatous dermatitis with acid-fast bacilli positivity. A diagnosis of noninfective granulomatous dermatitis was made. Treatment started with analgesics and anti-inflammatory agents. Systemic antibiotics were required in 9/15 patients. Patients are being followed up with no reported recurrence till date. CONCLUSION: The possibility of injection-site granuloma should be taken into the risk-benefit analysis for the administration of Mycobacterium w vaccine and the patients should be counseled as such. Patients with persistent ulceration respond to combinations of doxycycline, ofloxacin, and clarithromycin.


Assuntos
Vacinas Bacterianas , Granuloma , Humanos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Granuloma/microbiologia , Granuloma/patologia , Pessoa de Meia-Idade , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/administração & dosagem , COVID-19/prevenção & controle , Reação no Local da Injeção/etiologia , Adulto Jovem , Antibacterianos/uso terapêutico
9.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910219

RESUMO

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Assuntos
Aeromonas hydrophila , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Proteínas Recombinantes , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Administração Oral , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vacinação , Nanovacinas
10.
PLoS One ; 19(5): e0294998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713688

RESUMO

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Assuntos
Vacinas Bacterianas , Modelos Animais de Doenças , Francisella tularensis , Ratos Endogâmicos F344 , Tularemia , Vacinas de Subunidades Antigênicas , Animais , Tularemia/prevenção & controle , Tularemia/imunologia , Ratos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Francisella tularensis/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Glucanos/imunologia , Glucanos/farmacologia , Linfócitos T/imunologia , Feminino , Antígenos de Bactérias/imunologia
11.
Vet Microbiol ; 293: 110093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692193

RESUMO

Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Infecções por Mycoplasma , Mycoplasma gallisepticum , Doenças das Aves Domésticas , Vacinação , Animais , Mycoplasma gallisepticum/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Anticorpos Antibacterianos/sangue
12.
J Control Release ; 370: 379-391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697317

RESUMO

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Assuntos
Vacinas Anticâncer , Galactosilceramidas , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Animais , Galactosilceramidas/administração & dosagem , Galactosilceramidas/química , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Feminino , Nanopartículas/química , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Vacinas de mRNA , Adjuvantes Imunológicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , RNA Mensageiro/administração & dosagem , Camundongos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Lipídeos/química , Lipossomos
13.
Vaccine ; 42(18): 3802-3810, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38719690

RESUMO

Due to its antimicrobial resistance characteristics, the World Health Organization (WHO) classifies A. baumannii as one of the critical priority pathogens for the development of new therapeutic strategies. Vaccination has been approached as an interesting strategy to overcome the lack of effective antimicrobials and the long time required to develop and approve new drugs. In this study, we aimed to evaluate as a vaccine the hypothetical adhesin protein CAM87009.1 in its recombinant format (rCAM87009.1) associated with aluminum hydroxide (Alhydrogel®) or biogenic silver nanoparticles (bio-AgNP) as adjuvant components against lethal infection by A. baumannii MDR strain. Both vaccine formulations were administered in three doses intramuscularly in BALB/c murine models and the vaccinated animals were tested in a challenge assay with A. baumannii MDR strain (DL100). rCAM87009.1 protein associated with both adjuvants was able to protect 100 % of animals challenged with the lethal strain during the challenge period. After the euthanasia of the animals, no A. baumannii colonies were detected in the lungs of animals vaccinated with the rCAM87009.1 protein in both formulations. Since the first immunization, high IgG antibody titers were observed (1:819,200), with results being statistically similar in both vaccine formulations evaluated. rCAM87009.1 associated with both adjuvants was capable of inducing at least one class of isotypes associated with the processes of neutralization (IgG2b and IgA for bio-AgNP and Alhydrogel®, respectively), opsonization (IgG1 in both vaccines) and complement activation (IgM and IgG3 for bio-AgNP and Alhydrogel®, respectively). Furthermore, reduced tissue damage was observed in animals vaccinated with rCAM87009.1 + bio-AgNP when compared to animals vaccinated with Alhydrogel®. Our results indicate that the rCAM87009.1 protein associated with both bio-AgNP and Alhydrogel® are combinations capable of promoting immunity against infections caused by A. baumannii MDR. Additionally, we demonstrate the potential of silver nanoparticles as alternative adjuvant molecules to the use of aluminum salts.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Adesinas Bacterianas , Adjuvantes Imunológicos , Anticorpos Antibacterianos , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Prata , Animais , Prata/administração & dosagem , Prata/farmacologia , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Camundongos , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Farmacorresistência Bacteriana Múltipla , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Modelos Animais de Doenças
14.
J Fish Dis ; 47(8): e13964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38798108

RESUMO

Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Vacinação , Animais , Doenças dos Peixes/prevenção & controle , Vacinação/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Aquicultura/métodos , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/veterinária , Bass/imunologia
15.
Vet Immunol Immunopathol ; 272: 110772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704989

RESUMO

A live, infectious vaccine candidate for epizootic bovine abortion, designated EBAA Vaccine, USDA-APHIS Product code #1544.00, has been reported to be both safe and effective. Previous studies established that a single dose of EBAA vaccine administered to cows at potencies of either 2000 or 500 live P. abortibovis-infected murine spleen cells (P.a.-LIC) induced protective immunity for a minimum of 5 months. The current study employed 19 pregnant cows that were challenged with P. abortibovis in their 2nd trimester of gestation; 9 were vaccinated 17.2-months earlier as 1-year-olds with 2000 P.a.-LIC and 10 served as negative controls. Eighty-nine percent of the vaccinates gave birth to healthy calves as compared to 10% of challenge controls. Vaccine efficacy was significant when analyzed by prevented fractions (87.7%; 95% CI=0.4945-0.9781). Serologic data supports previous findings that pregnant cows with detectable P. abortibovis antibodies are immune to P. abortibovis challenge as demonstrated by the birth of healthy calves.


Assuntos
Aborto Animal , Animais , Bovinos , Feminino , Gravidez , Aborto Animal/imunologia , Aborto Animal/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Estações do Ano , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem
16.
Fish Shellfish Immunol ; 150: 109663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821228

RESUMO

Persistent nocardiosis has prompted exploration of the effectiveness of heterologous approaches to prevent severe infections. We have previously reported the efficacy of a nucleic acid vaccine in protecting groupers from highly virulent Nocardia seriolae infections. Ongoing research has involved the supplementation of recombinant cholesterol oxidase (rCho) proteins through immunization with a DNA vaccine to enhance the protective capacity of orange-spotted groupers. Recombinant rCho protein exhibited a maturity and biological structure comparable to that expressed in N. seriolae, as confirmed by Western blot immunodetection assays. The immune responses observed in vaccinated groupers were significantly higher than those observed in single-type homologous vaccinations, DNA or recombinant proteins alone (pcD:Cho and rCho/rCho), especially cell-mediated immune and mucosal immune responses. Moreover, the reduction in N. seriolae occurrence in internal organs, such as the head, kidney, and spleen, was consistent with the vaccine's efficacy, which increased from approximately 71.4 % to an undetermined higher percentage through heterologous vaccination strategies of 85.7 %. This study underscores the potential of Cho as a novel vaccine candidate and a heterologous approach for combating chronic infections such as nocardiosis.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nocardiose , Nocardia , Animais , Nocardiose/veterinária , Nocardiose/prevenção & controle , Nocardiose/imunologia , Nocardia/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Bass/imunologia , Colesterol Oxidase/imunologia , Colesterol Oxidase/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem
17.
Biomed Pharmacother ; 174: 116611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643540

RESUMO

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Assuntos
Vacinas Bacterianas , Epitopos , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/imunologia , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Camundongos , Feminino , Epitopos/imunologia , Camundongos Endogâmicos BALB C , Antígenos de Bactérias/imunologia , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/patologia , Imunidade Celular/efeitos dos fármacos , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/farmacologia , Imunidade Humoral/efeitos dos fármacos
18.
PLoS One ; 19(4): e0302555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683795

RESUMO

Clostridial dermatitis (CD), caused by Clostridium septicum, is an emerging disease of increasing economic importance in turkeys. Currently, there are no effective vaccines for CD control. Here, two non-toxic domains of C. septicum alpha toxin, namely ntATX-D1 and ntATX-D2, were identified, cloned, and expressed in Escherichia coli as recombinant subunit proteins to investigate their use as potential vaccine candidates. Experimental groups consisted of a Negative control (NCx) that did not receive C. septicum challenge, while the adjuvant-only Positive control (PCx), ntATX-D1 immunization (D1) and ntATX-D2 immunization (D2) groups received C. septicum challenge. Turkeys were immunized subcutaneously with 100 µg of protein at 7, 8 and 9 weeks of age along with an oil-in-water nano-emulsion adjuvant, followed by C. septicum challenge at 11 weeks of age. Results showed that while 46.2% of birds in the PCx group died post-challenge, the rate of mortality in D1- or D2-immunization groups was 13.3%. The gross and histopathological lesions in the skin, muscle and spleen showed that the disease severity was highest in PCx group, while the D2-immunized birds had significantly lower lesion scores when compared to PCx. Gene expression analysis revealed that PCx birds had significantly higher expression of pro-inflammatory cytokine genes in the skin, muscle and spleen than the NCx group, while the D2 group had significantly lower expression of these genes compared to PCx. Peripheral blood cellular analysis showed increased frequencies of activated CD4+ and/or CD8+ cells in the D1 and D2-immunized groups. Additionally, the immunized turkeys developed antigen-specific serum IgY antibodies. Collectively, these findings indicate that ntATX proteins, specifically the ntATX-D2 can be a promising vaccine candidate for protecting turkeys against CD and that the protection mechanisms may include downregulation of C. septicum-induced inflammation and increased CD4+ and CD8+ cellular activation.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Clostridium septicum , Dermatite , Doenças das Aves Domésticas , Proteínas Recombinantes , Perus , Animais , Perus/imunologia , Clostridium septicum/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/imunologia , Infecções por Clostridium/veterinária , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Toxinas Bacterianas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Dermatite/prevenção & controle , Dermatite/imunologia , Dermatite/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Imunização
19.
Front Immunol ; 15: 1367253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646533

RESUMO

Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry worldwide; it is caused by multiple bacterial or viral coinfections, of which Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens. Although live vaccines have demonstrated better efficacy against BRD induced by both pathogens, there are no combined live and marker vaccines. Therefore, we developed an attenuated and marker M. bovis-BoHV-1 combined vaccine based on the M. bovis HB150 and BoHV-1 gG-/tk- strain previously constructed in our lab and evaluated in rabbits. This study aimed to further evaluate its safety and protective efficacy in cattle using different antigen ratios. After immunization, all vaccinated cattle had a normal rectal temperature and mental status without respiratory symptoms. CD4+, CD8+, and CD19+ cells significantly increased in immunized cattle and induced higher humoral and cellular immune responses, and the expression of key cytokines such as IL-4, IL-12, TNF-α, and IFN-γ can be promoted after vaccination. The 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- combined strain elicited the most antibodies while significantly increasing IgG and cellular immunity after challenge. In conclusion, the M. bovis HB150 and BoHV-1 gG-/tk- combined strain was clinically safe and protective in calves; the mix of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its low amount of shedding and highest humoral and cellular immune responses compared with others. This study introduces an M. bovis-BoHV-1 combined vaccine for application in the cattle industry.


Assuntos
Herpesvirus Bovino 1 , Mycoplasma bovis , Vacinas Atenuadas , Vacinas Combinadas , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Mycoplasma bovis/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Citocinas/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Mycoplasma/prevenção & controle , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/imunologia , Vacinas Marcadoras/imunologia , Vacinas Marcadoras/administração & dosagem , Vacinação/veterinária , Eficácia de Vacinas , Imunidade Humoral , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/imunologia , Complexo Respiratório Bovino/virologia
20.
Microbes Infect ; 26(5-6): 105346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670217

RESUMO

Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.


Assuntos
Adjuvantes Imunológicos , Imunoglobulina G , Lipossomos , Animais , Lipossomos/imunologia , Lipossomos/administração & dosagem , Suínos , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Anticorpos Antibacterianos/sangue , Adjuvantes de Vacinas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Poli I-C/administração & dosagem , Poli I-C/imunologia , Chlamydia/imunologia , Tretinoína/administração & dosagem , Tretinoína/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/administração & dosagem , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/imunologia , Imunidade Celular , Glicolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...