Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Int Immunopharmacol ; 96: 107638, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848909

RESUMO

The majority of urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC). Designing a vaccine will certainly reduce the occurrence of infection and antibiotic resistance of the isolates. Antigen 43 (Ag43) and autotransporter H (UpaH) have been associated with the virulence of UPEC. In the present study, the efficacy of different formulations of a hybrid protein composed of Ag43 and UpaH with and without alum and 1,25(OH)2D3 (Vitamin D3) adjuvants were evaluated in mice model. A significant increase in IgG and cellular responses was developed against Ag43::UpaH as compared to the control mice. The addition of alum or a mixture of alum and Vitamin D3 to the protein significantly enhanced the serum IgG responses and tended to remain in a steady state until 6 months. In addition, the mentioned formulations produced significant amounts of IgG1, IL-4, and IL-17 as compared to the fusion protein alone. In addition to the mentioned formulations, the combination of protein with Vitamin D3 also resulted in significantly higher serum IgA and IFN-γ levels as compared to the fusion protein alone. Mice immunized with fusion plus alum and formulation protein admixed with both alum and Vitamin D3 significantly reduced the bacterial load in the bladders and kidneys of mice as compared to the control. In this study, for the first time, the ability of a novel hybrid protein in combination with adjuvants alum and Vitamin D3 was evaluated against UPEC. Our results indicated that fusion Ag43::UpaH admixed with alum and Vitamin D3 could be a promising candidate against UTIs.


Assuntos
Compostos de Alúmen/farmacologia , Colecalciferol/farmacologia , Proteínas de Escherichia coli/imunologia , Proteínas Recombinantes de Fusão/imunologia , Infecções Urinárias/prevenção & controle , Escherichia coli Uropatogênica/imunologia , Fatores de Virulência/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/urina , Antígenos de Bactérias/imunologia , Carga Bacteriana/efeitos dos fármacos , Carga Bacteriana/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Colecalciferol/administração & dosagem , Citocinas/metabolismo , Imunidade Humoral/efeitos dos fármacos , Imunização/métodos , Imunoglobulina G/sangue , Imunoglobulina G/urina , Injeções Intravenosas , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/isolamento & purificação , Infecções Urinárias/imunologia
2.
Front Immunol ; 11: 1069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655550

RESUMO

Acinetobacter baumannii (A. baumannii) is becoming a common global concern due to the emergence of multi-drug or pan-drug resistant strains. Confronting the issue of antimicrobial resistance by developing vaccines against the resistant pathogen is becoming a common strategy. In this study, different methods for preparing A. baumannii outer membrane vesicles (AbOMVs) vaccines were developed. sOMV (spontaneously released AbOMV) was extracted from the culture supernatant, while SuOMV (sucrose-extracted AbOMV) and nOMV (native AbOMV) were prepared from the bacterial cells. Three AbOMVs exhibited significant differences in yield, particle size, protein composition, and LPS/DNA content. To compare the protective efficacy of the three AbOMVs, groups of mice were immunized either intramuscularly or intranasally with each AbOMV. Vaccination via both routes conferred significant protection against lethal and sub-lethal A. baumannii challenge. Moreover, intranasal vaccination provided more robust protection, which may be attributed to the induction of significant sIgA response in mucosal sites. Among the three AbOMVs, SuOMV elicited the highest level of protective immunity against A. baumannii infection, whether intramuscular or intranasal immunization, which was characterized by the expression of the most profound specific serum IgG or mucosal sIgA. Taken together, the preparation method had a significant effect on the yield, morphology, and composition of AbOMVs, that further influenced the protective effect against A. baumannii infection.


Assuntos
Acinetobacter baumannii/imunologia , Vacinas Bacterianas/isolamento & purificação , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/ultraestrutura , Administração Intranasal , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/sangue , Especificidade de Anticorpos , Membrana Externa Bacteriana/imunologia , Membrana Externa Bacteriana/ultraestrutura , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade nas Mucosas , Imunoglobulina A Secretora/biossíntese , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão
3.
BMC Microbiol ; 20(1): 66, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213160

RESUMO

BACKGROUND: Francisella tularensis is a fastidious, Gram-negative coccobacillus and is the causative agent of tularemia. To assess viability yet overcome lengthy incubation periods, a culture-based PCR method was used to detect early growth of the lowest possible number of F. tularensis cells. This method utilized a previously developed enhanced F. tularensis growth medium and is based on the change in PCR cycle threshold at the start and end of each incubation. RESULTS: To test method robustness, a virulent Type A1 (Schu4) and B (IN99) strain and the avirulent Live Vaccine Strain (LVS) were incubated with inactivated target cells, humic acid, drinking and well water, and test dust at targeted starting concentrations of 1, 10, and 100 CFU mL- 1 (low, mid, and high, respectively). After 48 h, LVS growth was detected at all targeted concentrations in the presence of 106 inactivated LVS cells; while Schu4 and IN99 growth was detected in the presence of 104 Schu4 or IN99 inactivated cells at the mid and high targets. Early detection of F. tularensis growth was strain and concentration dependent in the presence of fast-growing well water and test dust organisms. In contrast, growth was detected at each targeted concentration by 24 h in humic acid and drinking water for all strains. CONCLUSIONS: Results indicated that the culture-based PCR assay is quick, sensitive, and specific while still utilizing growth as a measure of pathogen viability. This method can circumvent lengthy incubations required for Francisella identification, especially when swift answers are needed during epidemiological investigations, remediation efforts, and decontamination verification.


Assuntos
Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Francisella tularensis/crescimento & desenvolvimento , Vacinas Bacterianas/genética , Vacinas Bacterianas/isolamento & purificação , Francisella tularensis/genética , Francisella tularensis/isolamento & purificação , Substâncias Húmicas/microbiologia , Viabilidade Microbiana , Reação em Cadeia da Polimerase
4.
Vaccine ; 38(3): 549-561, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740094

RESUMO

Mycoplasma bovis is an important pathogenic bacterium affecting cows and cattle. Clinically, an inactivated vaccine of M. bovis is mainly used to prevent infection by this bacterium. The changes that occur in the antigen when M. bovis is continuously passaged in vitro remain unknown. Therefore, we performed an in vitro serial passage of the M. bovis NM-28 strain, which was isolated and identified in our laboratory. An isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics method was used to analyse the differences between generations 3 and 60. Many major membrane proteins or protective antigens reported in the literature did not exhibit changes between these generations. We found an imbalance between growth rate and nutrition in the 60th generation. The proteomics results were verified by western blotting and real-time PCR. Growth curves were also prepared based on colony-forming units (CFUs) between the 3rd and 60th generations. The number of colonies in the 60th generation in the stationary phase was 5 × 109 CFU mL-1, which was 10-fold higher than that in the 3rd generation. The 60th generation of the NM-28 strain can be used as an inactivated vaccine strain of M. bovis to lower production costs compared to use of the 3rd generation.


Assuntos
Vacinas Bacterianas/genética , Mycoplasma bovis/crescimento & desenvolvimento , Mycoplasma bovis/genética , Proteômica/métodos , Vacinas de Produtos Inativados/genética , Animais , Vacinas Bacterianas/isolamento & purificação , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/prevenção & controle , Mycoplasma bovis/isolamento & purificação , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vacinas de Produtos Inativados/isolamento & purificação
5.
Expert Rev Vaccines ; 18(12): 1323-1337, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31773996

RESUMO

Background: Vaccine-development research is proliferating making it difficult to determine the most promising vaccine candidates. Exemplary of this problem is vaccine development against Chlamydia, a pathogen of global public health and financial importance.Methods: We systematically extracted data from studies that included chlamydial load or host immune parameter measurements, estimating 4,453 standardized effect sizes between control and chlamydial immunization experimental groups.Results: Chlamydial immunization studies most often used (78%) laboratory mouse models. Depending on chlamydial species, single and multiple recombinant protein, viral and bacterial vectors, dendritic transfer, and dead whole pathogen were most effective at reducing chlamydial load. Immunization-driven decrease in chlamydial load was associated with increases in IFNg, IgA, IgG1, and IgG2a. Using data from individual studies, the magnitude of IgA and IgG2a increase was correlated with chlamydial load reduction. IFNg also showed this pattern for C. trachomatis, but not for C. muridarum. We also reveal the chlamydial vaccine development field to be highly bias toward studies showing these effects, limiting lessons learned from negative results.Conclusions: Most murine immunizations against Chlamydia reduced chlamydial load and increased host immune parameters. These methods are novel for vaccine development and are critical in identifying trends where large quantities of literature exist.


Assuntos
Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Infecções por Chlamydia/prevenção & controle , Chlamydia/imunologia , Desenvolvimento de Medicamentos/métodos , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Desenvolvimento de Medicamentos/tendências , Interferon gama/metabolismo , Camundongos , Resultado do Tratamento
6.
J Appl Microbiol ; 127(6): 1646-1655, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529560

RESUMO

AIMS: The outer membrane porin protein (OMPP) of Bordetella bronchiseptica is an important adhesion factor and protective immunogen. The aim of this study was to verify the immunogenicity of recombinant OMPP and its protective efficacy against a lethal challenge with B. bronchiseptica in rabbits. METHODS AND RESULTS: Soluble rOMPP was successfully expressed in Escherichia coli, and the purified recombinant protein was mixed with the ISA 201 VG adjuvant to prepare a subunit vaccine for B. bronchiseptica. Rabbits were immunized with the rOMPP subunit vaccine and then infected with the virulent B. bronchiseptica strain QDBb01. Rabbits immunized with the subunit vaccine were completely protected compared to the control group, and the protective effect was obviously better than that of the inactivated whole-cell vaccine. Moreover, analysis of the immunization duration showed that the rOMPP subunit vaccine provided immune protection for at least 4 months after the second immunization. CONCLUSIONS: The rOMPP subunit vaccine completely protected rabbits from a subsequent B. bronchiseptica challenge. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will provide key information for the development of a safe and effective recombinant subunit vaccine against B. bronchiseptica in rabbits.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/imunologia , Porinas/imunologia , Adjuvantes Imunológicos , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Infecções por Bordetella/imunologia , Bordetella bronchiseptica/patogenicidade , Imunização , Porinas/genética , Porinas/isolamento & purificação , Porinas/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades Antigênicas
7.
Microb Pathog ; 136: 103707, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31491549

RESUMO

Riemerella anatipestifer (R. anatipestifer) causes septicemia and infectious serositis in domestic ducks, leading to high mortality and great economic losses worldwide. Vaccination is currently considered the best strategy to prevent R. anatipestifer infection in ducklings. In this study, we fused the duck IgY Fc gene to the outer membrane protein A (ompA) of R. anatipestifer. The eukaryotic expression plasmid carrying the fusion gene was transformed into Pichia pastoris (P. pastoris) to express the recombinant ompA and ompA-Fc proteins. Then, the effects of fused Fc on the vitality and antigen processing efficiency of duck peritoneal macrophages (PMø) were evaluated in vitro, whereas their immunogenicity was evaluated in vivo. Furthermore, Schisandra chinensis polysaccharide (SCP) was used to evaluate its immune-conditioning effects on the activation of PMø. SCP was also used as adjuvant to investigate immunomodulation on immunoresponses induced by the fused ompA-Fc in ducklings. The conventional Freund's incomplete adjuvant served as the control of SCP. Notably, ompA-Fc promoted phagocytosis of PMø and significantly increased serum antibody titers, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and serum levels of IL-2 and IL-4. In addition, ducklings injected with the ompA-Fc vaccine exhibited considerably greater resistance to the R. anatipestifer challenge than those that received vaccines based on standalone ompA. Of note, SCP was demonstrated to boost the secretion of nitric oxide (NO), IL-1ß, IL-6, TNF-α, and IFN-ß by duck macrophages. In addition, the supplementation of SCP adjuvant to the ompA-Fc vaccines led to the further enhancement of immune response and vaccine protection. The dose of 200 µg/mL showed the most pronounced effects. This study provided valuable insights into protective strategies against R. anatipestifer infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Doenças das Aves/prevenção & controle , Patos , Infecções por Flavobacteriaceae/veterinária , Riemerella/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Infecções por Flavobacteriaceae/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulinas/genética , Macrófagos Peritoneais/imunologia , Polissacarídeos/administração & dosagem , Polissacarídeos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Riemerella/genética , Schisandra/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação
8.
Helicobacter ; 24 Suppl 1: e12644, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31486236

RESUMO

Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro-inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and alpha-protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T-cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non-toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno , Vacinas Bacterianas/isolamento & purificação , Pesquisa Biomédica/tendências , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Helicobacter/prevenção & controle , Humanos , Tolerância Imunológica , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Células Mieloides/imunologia , Células Mieloides/microbiologia , Linfócitos T Reguladores/imunologia
9.
PLoS Negl Trop Dis ; 13(8): e0007644, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430284

RESUMO

Bacillus anthracis and Yersinia pestis are zoonotic bacteria capable of causing severe and sometimes fatal infections in animals and humans. Although considered as diseases of antiquity in industrialized countries due to animal and public health improvements, they remain endemic in vast regions of the world disproportionally affecting the poor. These pathogens also remain a serious threat if deployed in biological warfare. A single vaccine capable of stimulating rapid protection against both pathogens would be an extremely advantageous public health tool. We produced multiple-antigen fusion proteins (MaF1 and MaF2) containing protective regions from B. anthracis protective antigen (PA) and lethal factor (LF), and from Y. pestis V antigen (LcrV) and fraction 1 (F1) capsule. The MaF2 sequence was also expressed from a plasmid construct (pDNA-MaF2). Immunogenicity and protective efficacy were investigated in mice following homologous and heterologous prime-boost immunization. Antibody responses were determined by ELISA and anthrax toxin neutralization assay. Vaccine efficacy was determined against lethal challenge with either anthrax toxin or Y. pestis. Both constructs elicited LcrV and LF-specific serum IgG, and MaF2 elicited toxin-neutralizing antibodies. Immunizations with MaF2 conferred 100% and 88% protection against Y. pestis and anthrax toxin, respectively. In contrast, pDNA-MaF2 conferred only 63% protection against Y. pestis and no protection against anthrax toxin challenge. pDNA-MaF2-prime MaF2-boost induced 75% protection against Y. pestis and 25% protection against anthrax toxin. Protection was increased by the molecular adjuvant CARDif. In conclusion, MaF2 is a promising multi-antigen vaccine candidate against anthrax and plague that warrants further investigation.


Assuntos
Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Vacinas Bacterianas/imunologia , Peste/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Yersinia pestis/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/isolamento & purificação , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Yersinia pestis/genética
10.
J Infect Public Health ; 12(6): 831-842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230953

RESUMO

BACKGROUND: Human infection by Acinetobacter baumannii has been increased due to its resistance against most of the antibiotics. Therefore, the present study aimed to design a candidate vaccine against A. baumannii infection. METHODS: The protein and DNA contents of A. baumannii Ali190 were extracted using different critical concentrations of hydrogen peroxide, sodium hydroxide and sodium carbonate leading to the ghost of A. baumannii Ali190. Transmission and scanning electron microscope showed that it retained the 3D structure of its cell membrane. The ghost injected to rats via different routes of administrations including oral, subcutaneous, intramuscular, intraperitoneal, subcutaneous with adjuvant, and intramuscular with adjuvant. RESULTS: ß-Lactamase OXA-51 gene, is a predominant gene in all Acinetobacter strains, the gene was partially sequenced. The DNA sequence of OXA-51 gene showed 98% homology with A. baumannii isolate 6077/12 and also showed less homology percentage with other strains of Acinetobacter. A new strain of Acinetobacter has been deposited in Gene Bank under accession number MG062776. All routes of ghost administration showed full protection against live bacteria except oral administration showed 67% protection. On the other hand, all non-vaccinated rats did not survive after infection with live bacteria. SDS-gel electrophoresis of protein patterns of both A. baumannii and its ghost showed common protein bands with molecular weights 70, 60, and 23 kDa which were detected using western immunoblotting after raising the primary antibodies against A. baumannii ghost. The levels of INF-γ were significantly increased in all vaccinated groups, particularly in subcutaneous and subcutaneous with adjuvant compared to the control group. CONCLUSION: With the exception of oral administration, all vaccinated rats via different routes of ABG administration showed full protection (100%) against live A. baumannii. However, 100% mortality rate was observed in non-vaccinated rats. Therefore, ABG could be useful as a candidate vaccine against A. baumannii infection.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Transmissão de Doença Infecciosa/prevenção & controle , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/classificação , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Modelos Animais de Doenças , Humanos , Masculino , Ratos Sprague-Dawley , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação
11.
Methods Mol Biol ; 1997: 121-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119622

RESUMO

The emergence and spread of fully antimicrobial resistant Neisseria gonorrhoeae (GC) highlights a clear need for next-generation antigonococcal therapeutics. A broadly reactive anti-GC vaccine would best address this global public health threat. Polyantigenic outer membrane vesicles (OMVs) derived from GC can overcome the challenges posed by GC's high rate of phase and antigen variation. In fact, GC OMVs have already shown promise as a vaccine antigen; however, all previous studies have utilized vesicles contaminated by RMP, a bacterioprotective antigen known to entirely abrogate vaccine-induced bactericidal activity in vivo. Additionally, these studies primarily utilized vesicles isolated through techniques like membrane disruption with detergents, which are known to increase contamination of cytoplasmic components as compared to naturally released OMVs (nOMVs). This chapter describes the isolation and characterization of naturally released nOMVs through sequential size and weight restrictive filtration. nOMVs are characterized by morphology, proteomics, and bioactivity via various methods. Herein we also describe methods for further evaluation of the innate and induced immunogenicity of rmp-deficient GC nOMVs by cell stimulation and murine vaccination. Per these methods, nOMVs are found to be largely homogenous spherical structures approximately 70 nm in diameter containing a consistent subset of GC outer membrane proteins. The rmp-deficient vesicles demonstrate a morphology and, with the exception of RMP, antigenic profile consistent with that of nOMVs derived from wild time N. gonorrhoeae. Additionally, vesicles lacking RMP are able to engage and strongly activate a diverse array of pattern recognition receptors in vitro. These methods lay the groundwork for future experiments examining the in vivo protective efficacy of the anti-GC response induced by these nOMVs as well as studies examining the mechanism of vaccine induced female genital tract immunity.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Vacinas Bacterianas/imunologia , Neisseria gonorrhoeae/imunologia , Vesículas Secretórias/imunologia , Animais , Antígenos de Bactérias/imunologia , Membrana Externa Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/isolamento & purificação , Vacinas Bacterianas/uso terapêutico , Feminino , Filtração/instrumentação , Filtração/métodos , Gonorreia/imunologia , Gonorreia/microbiologia , Gonorreia/terapia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Neisseria gonorrhoeae/citologia , Proteômica , Vacinação , Vagina/microbiologia
12.
Anaerobe ; 58: 73-79, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31034928

RESUMO

Increased antibiotic usage is the main risk factor for gut microbiota dysbiosis. In dysbiosis, there is an increased susceptibility to intestinal pathogens, such as Clostridium difficile infection, the leading cause of hospital-acquired infection worldwide. High-spectrum antibiotics, such as vancomycin or metronidazole, also increases the risk of developing CDI symptoms after the treatment. An impaired immune response could also be responsible for the high incidence of recurrence of CDI (R-CDI), suggesting that immune system stimulation could help eradicate the infection in patients suffering multiple episodes in CDI or prevent the infective course. Here, we discuss novel immunotherapeutic approaches that aid the immune system to target C. difficile and how these can be improved.


Assuntos
Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/terapia , Imunoterapia/métodos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/isolamento & purificação , Pesquisa Biomédica/tendências , Humanos
13.
Biotechnol Bioeng ; 116(2): 260-271, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418677

RESUMO

Recombinant antigens exhibit targeted protectiveproperties and offer important opportunities in the development of therapeutic technologies. Biophysical and structural methods have become important tools for the rational design and engineering of improved antigen-based vaccines. Vaccines containing Leptospira immunoglobulin-like (Lig) protein-derived antigens are currently the most promising candidates for protective immunity against the globally prevalent bacterial pathogen, Leptospira interrogans; however, vaccine trials using these domains have produced inconsistent results. Here, we compare the thermostability of domains from the main immunogenic regions from major leptospiral antigens, LigA and LigB. By measuring temperature-dependent fluorescence decay of the hydrophobic core tryptophan, 17 individual Lig protein immunoglobulin-like (Ig-like) domains were shown to display a broad range of unfolding temperatures. For a majority of the domains, stability issues begin to occur at physiologically relevant temperatures. A set of chimeric Ig-like domains was used to establish the ability of transplanted domain regions to enhance thermostability. Further insights into the determinants for domain stabilization were explored with nuclear magnetic resonance dynamics and mutational analysis. The current study has yielded a set of thermostable Ig-like domain scaffolds for use in engineering antigen-based vaccines and demonstrates the importance of incorporating thermostability screening as a design parameter.


Assuntos
Antígenos de Bactérias/química , Vacinas Bacterianas/isolamento & purificação , Temperatura Alta , Leptospirose/prevenção & controle , Proteínas Recombinantes/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Descoberta de Drogas/métodos , Programas de Rastreamento/métodos , Conformação Proteica/efeitos da radiação , Dobramento de Proteína/efeitos da radiação , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinologia/métodos
14.
Biotechnol Bioeng ; 116(3): 591-597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30450582

RESUMO

Conjugated vaccines prepared from the capsular polysaccharide of Streptococcus pneumoniae can provide immunization against invasive pneumococcal disease, meningitis, and otitis media. One of the critical steps in the production of these vaccines is the removal of free (unreacted) polysaccharides from the protein-polysaccharide conjugate. Experimental studies were performed to evaluate the effects of membrane pore size, filtrate flux, and solution conditions on the transmission of both the conjugate and free polysaccharide through different ultrafiltration membranes. Conjugate purification was done using diafiltration performed in a linearly-scalable tangential flow filtration cassette. More than 98% of the free polysaccharide was removed within a 5-diavolume diafiltration process, which is a significant improvement over previously reported results for purification of similar conjugated vaccines. These results clearly demonstrate the opportunities for using ultrafiltration/diafiltration for the final purification of conjugated vaccine products.


Assuntos
Cápsulas Bacterianas/química , Vacinas Bacterianas/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Ultrafiltração/métodos , Vacinas Conjugadas/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Vacinas Bacterianas/química , Porosidade , Streptococcus pneumoniae/química , Vacinas Conjugadas/química
15.
Microb Pathog ; 127: 56-59, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30508625

RESUMO

Streptococcus parauberis is the major infectious agent of streptococcosis in the olive flounder (Paralichthys olivaceus), causing serious economic damage. In this study, we identified potential vaccine candidates against S. parauberis by reverse vaccinology. In total, the 2 out of 21 proteins were identified as vaccine candidates from two available S. parauberis genomes. The membrane-anchored protein SEC10/PgrA and the metal ABC transporter substrate-binding lipoprotein mtsA were potent antigenic proteins based on western blotting with mouse-derived antiserum against whole bacteria of S. parauberis serotypes I and II. In particular, metal ABC transporter substrate-binding lipoprotein (mtsA) showed similar protective immunity to that of whole-cell bacterins against S. parauberis in a zebrafish model. These results suggest that mtsA may be considered as a novel candidate in the development of vaccines against S. parauberis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/imunologia , Vacinologia/métodos , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Modelos Animais de Doenças , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Análise de Sobrevida , Peixe-Zebra
16.
Microb Pathog ; 125: 514-520, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30321591

RESUMO

Brucellosis is a highly contagious and zoonotic disease and has a considerable impact on animal health and economy of a country, principally in Pakistan, where rural income largely depends upon livestock farming and dairy products. The disease burden is more in underdeveloped/developing countries due to the low economy and limited access to the diagnostic facilities. In Pakistan, the prevalence of Brucella abortus is very high, so it is the need of the hour to control this disease through more advanced methods. This study was designed with the aim to construct the DNA based vaccine of gene encoding antigenic surface protein (BCSP31). For this purpose, the BCSP31 gene was amplified, purified and ligated in pTZ57 R/T (cloning vector). Dubbed BCSP31-pTZ57 R/T vector was transformed into competent cells (DH5α). After plasmid extraction, the plasmid and pET-28a vector was restricted with EcoRI and BamHI. Again, ligation was done and dubbed pET-28a-BCSP31 transformed into E. coli (BL21). After expression, the protein was purified and used for evaluation of immunogenic response. The protective and immunogenic efficacy of the vaccine was evaluated in rabbits (n = 20). The rabbits were divided into four equal groups. Groups A-C were given purified protein diluted in normal saline @ 750, 1500 and 3000 µg/0.2 mL, respectively through intraconjunctival route. Group D was given 0.2 mL normal saline through intraconjunctival route. Specific immunoglobulin G (IgG) responses were measured through indirect ELISA on a weekly basis. The titer of IgG against the antigen was significantly (p < 0.05) higher in vaccinated groups A-C as compared to group D (control group) in a dose dependent manner. Moreover, log units of protection produced by DNA based vaccine in the rabbits (3.02) also indicated the protective efficacy of the DNA vaccine against B. abortus challenge. The response of this vaccine in rabbit suggested its potential effectiveness against Brucella abortus in large animals.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Brucella abortus/imunologia , Proteínas de Membrana/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/isolamento & purificação , Brucella abortus/genética , Relação Dose-Resposta Imunológica , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Proteínas de Membrana/genética , Coelhos , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/isolamento & purificação
17.
Microb Pathog ; 125: 336-348, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273644

RESUMO

Yersinia enterocolitica is the third most common cause of gastrointestinal manifestations in Europe. Statistically, every year the pathogen accounts for 640 hospitalizations, 117,000 illnesses, and 35 deaths in the United States. The associated mortality rate of the pathogen is 50% and is virtually resistant to penicillin G, ampicillin and cephalotin. The development of new and effective therapeutic procedures is urgently needed to counter the multi-drug-resistant phenotypes imposed by the said pathogen. Based on subtractive reverse vaccinology and immunoinformatics approaches, we have successfully predicted novel antigenic peptide vaccine candidates against Y. enterocolitica. The pipeline revealed two isoforms of ompC family; meoA (ompC) and ompC2 as promising vaccine targets. Protein-protein interactions elaborated the involvement of target candidates in the major biological pathways of the pathogen. The predicted 9-mer B-cell derived T-cell epitope of proteins are found to be virulent, antigenic, non-allergic, surface exposed and conserved in all nine completely sequenced strains of the pathogen. Molecular docking predicts deep and stable binding of the epitopes in the binding pocket of the most predominant allele in human population-the DRB1*0101. These epitopes of target proteins could provide the foundation for the development of an epitope-driven vaccine against Y. enterocolitica.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Epitopos de Linfócito T/imunologia , Yersinia enterocolitica/imunologia , Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Biologia Computacional , Epitopos de Linfócito T/química , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteômica
18.
Microb Pathog ; 125: 219-229, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243554

RESUMO

The Burkholderia pseudomallei is a unique bio-threat and causative agent of melioidosis. The B. pseudomallei Bp1651 strain has been isolated from a chronic cystic fibrosis patient. The genome-level DNA sequences information of this strain has recently been published. Unfortunately, there is no commercial vaccine available till date to combat B. pseudomallei infection. The genome-wide prioritization approaches are widely used for the identification of potential therapeutic candidates against pathogens. In the present study, we utilized the recently available annotated genomic information of B. pseudomallei Bp1651 through subtractive genomics and reverse-vaccinology strategies to identify its potential vaccine targets. The analyses identified more than 60 pathogen-specific, human host non-homologous proteins that may prioritize in future studies to investigate therapeutic targets for B. pseudomallei Bp1651. The potential B and T-cells antigenic determinant peptides from these pathogen-specific proteins were cataloged using antigenicity and epitope prediction tools. The analyses unveiled a promising antigenic peptide "FQWEFSLSV" from protein-export membrane protein (SecF) of Bp1651 strain, which was predicted to interact with multiple class I and class II MHC alleles with IC50 value < 100 nM. The molecular docking analysis verified favorable molecular interaction of this lead antigenic peptide with the ligand-binding pocket residues of HLA A*02:06 human host immune cell surface receptor. This peptide is predicted to be a suitable epitope capable to elicit the cell-mediated immune response against the B. pseudomallei pathogen. The putative epitopes and proteins identified in this study may be promising vaccine targets against Bp1651 as well as other pathogenic strains of B. pseudomallei.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/imunologia , Genômica/métodos , Vacinologia/métodos , Vacinas Bacterianas/isolamento & purificação , Biologia Computacional/métodos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genoma Bacteriano , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Melioidose/prevenção & controle , Simulação de Acoplamento Molecular , Ligação Proteica
19.
Pathog Dis ; 76(5)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052916

RESUMO

Gut infections triggered by pathogenic bacteria lead to most frequently occurring diarrhea in humans accounting for million deaths annually. Currently, only a few licensed vaccines are available against these pathogens for mostly travelers moving to diarrheal endemic areas. Besides commercialized vaccines, there are many formulations that are either under clinical or pre-clinical stages of development and despite several efforts to improve safety, immunogenicity and efficacy, none of them can confer long-term protective immunity, for which repeated booster doses are always recommended. Further in many countries, financial, social and political constraints have jeopardized vaccine development program against these pathogens that enforce us to gather knowledge on safety, tolerability, immunogenicity and protective efficacy regarding the same. In this review, we analyze safety and efficacy issues of vaccines against five major gut bacteria causing enteric infections. The article also simultaneously describes several barriers for vaccine development and further discusses possible strategies to enhance immunogenicity and efficacy.


Assuntos
Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/imunologia , Cólera/prevenção & controle , Desenvolvimento de Medicamentos/tendências , Infecções por Enterobacteriaceae/prevenção & controle , Vacinas Bacterianas/isolamento & purificação , Humanos
20.
PLoS One ; 13(6): e0198170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29883471

RESUMO

The bacterial species Campylobacter jejuni RM1221 (CjR) is the primary cause of campylobacteriosis which poses a global threat for human health. Over the years the efficacy of antibiotic treatment is becoming more fruitless due to the development of multiple drug resistant strains. Therefore, identification of new drug targets is a valuable tool for the development of new treatments for affected patients and can be obtained by targeting essential protein(s) of CjR. We conducted this in silico study in order to identify therapeutic targets by subtractive CjR proteome analysis. The most important proteins of the CjR proteome, which includes chokepoint enzymes, plasmid, virulence and antibiotic resistant proteins were annotated and subjected to subtractive analyses to filter out the CjR essential proteins from duplicate or human homologous proteins. Through the subtractive and characterization analysis we have identified 38 eligible therapeutic targets including 1 potential vaccine target. Also, 12 potential targets were found in interactive network, 5 targets to be dealt with FDA approved drugs and one pathway as potential pathway based drug target. In addition, a comprehensive database 'CampyNIBase' has also been developed. Besides the results of this study, the database is enriched with other information such as 3D models of the identified targets, experimental structures and Expressed Sequence Tag (EST) sequences. This study, including the database might be exploited for future research and the identification of effective therapeutics against campylobacteriosis. URL: (http://nib.portal.gov.bd/site/page/4516e965-8935-4129-8c3f-df95e754c562#Banner).


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Bases de Dados de Proteínas , Descoberta de Drogas/métodos , Terapia de Alvo Molecular/métodos , Transdução de Sinais/genética , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/isolamento & purificação , Vacinas Bacterianas/uso terapêutico , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Infecções por Campylobacter/terapia , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/patogenicidade , Conjuntos de Dados como Assunto , Genoma Bacteriano , Interações Hospedeiro-Patógeno/genética , Humanos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...