Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
Methods Enzymol ; 699: 447-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942514

RESUMO

Vanadium-dependent haloperoxidases (VHPOs) are a unique family of enzymes that utilize vanadate, an aqueous halide ion, and hydrogen peroxide to produce an electrophilic halogen species that can be incorporated into electron rich organic substrates. This halogen species can react with terpene substrates and trigger halonium-induced cyclization in a manner reminiscent of class II terpene synthases. While not all VHPOs act in this capacity, several notable examples from algal and actinobacterial species have been characterized to catalyze regio- and enantioselective reactions on terpene and meroterpenoid substrates, resulting in complex halogenated cyclic terpenes through the action of single enzyme. In this article, we describe the expression, purification, and chemical assays of NapH4, a difficult to express characterized VHPO that catalyzes the chloronium-induced cyclization of its meroterpenoid substrate.


Assuntos
Alquil e Aril Transferases , Terpenos , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Terpenos/metabolismo , Terpenos/química , Ciclização , Vanádio/metabolismo , Vanádio/química , Especificidade por Substrato , Peroxidases/metabolismo , Peroxidases/química , Peroxidases/genética , Ensaios Enzimáticos/métodos
2.
Plant Physiol Biochem ; 213: 108809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875778

RESUMO

The primary goal of this research is to investigate the mitigating effect of silicon (Si; 2 mM) on the growth of tomato seedlings under vanadium (V; 40 mg) stress. V stress caused higher V uptake in leaf, and enhanced concentration of leaf anthocyanin, H2O2, O2•-, and MDA, but a decreased in plant biomass, root architecture system, leaf pigments content, mineral elements, and Fv/Fm (PSII maximum efficiency). Si application increased the concentrations of crucial antioxidant molecules such as AsA and GSH, as well as the action of key antioxidant enzymes comprising APX, GR, DHAR, and MDHAR. Importantly, oxidative damage was remarkably alleviated by upregulation of these antioxidant enzymes genes. Moreover, Si application enhanced the accumulation of secondary metabolites as well as the expression their related-genes, and these secondary metabolites may restricted the excessive accumulation of H2O2. In addition, Si rescued tomato plants against the damaging effects of MG by boosting the Gly enzymes activity. The results confirmed that spraying Si to plants might diminish the V accessibility to plants, along with promotion of V stress resistance.


Assuntos
Antioxidantes , Plântula , Silício , Solanum lycopersicum , Vanádio , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Silício/farmacologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Vanádio/metabolismo , Vanádio/toxicidade , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Lactoilglutationa Liase/metabolismo , Lactoilglutationa Liase/genética , Regulação para Cima/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
3.
J Environ Manage ; 360: 121156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744211

RESUMO

With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.


Assuntos
Biodegradação Ambiental , Carbono , Solo , Vanádio , Carbono/metabolismo , Solo/química , Vanádio/metabolismo , Microbiologia do Solo , Millettia/metabolismo , Titânio/química , Mineração , Bactérias/metabolismo , Poluentes do Solo/metabolismo
4.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451444

RESUMO

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Assuntos
Ciona intestinalis , Vanádio , Animais , Vanádio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiologia , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Meios de Cultura/química , RNA Ribossômico 16S/genética
5.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225717

RESUMO

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Assuntos
Medicago truncatula , Vanádio , Humanos , Vanádio/metabolismo , Mutação , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transdução de Sinais
6.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069032

RESUMO

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Receptores de N-Metil-D-Aspartato , Ratos , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Vanádio/toxicidade , Vanádio/metabolismo , Morte Celular , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Hipocampo/metabolismo
7.
Int J Biol Macromol ; 253(Pt 5): 127875, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37924912

RESUMO

In this article, the implications of binding competition of vanadates(V) with dodecyl sulfates for bovine serum albumin on cytotoxicity of vanadium(V) species against prostate cancer cells have been investigated. The pH- and SDS-dependent vanadate(V)-BSA interactions were observed. At pH 5, there is only one site capable of binding ten vanadates(V) ions (logK(ITC)1 = 4.96 ± 0.06; ΔH(ITC)1 = -1.04 ± 0.03 kcal mol-1), whereas at pH 7 two distinctive binding sites on protein were found, saturated with two and seven V(V) ions, respectively (logK(ITC)1 = 6.11 ± 0.06; ΔH(ITC)1 = 0.78 ± 0.12 kcal mol-1; logK(ITC)2 = 4.80 ± 0.02; ΔH(ITC)2 = - 4.95 ± 0.14 kcal mol-1). SDS influences the stoichiometry and the stability of the resulting V(V)-BSA complexes. Finally, the cytotoxicity of vanadates(V) against prostate cancer cells (PC3 line) was examined in the presence and absence of SDS in the culture medium. In the case of a 24-h incubation with 100 µM vanadate(V), a ca. 20 % reduction in viability of PC3 cells was observed in the presence of SDS. However, in other considered cases (various concentrations and time of incubation) SDS does not affect the dose-dependent action of vanadates(V) on the investigated prostate cancer cells.


Assuntos
Neoplasias da Próstata , Vanadatos , Humanos , Masculino , Vanadatos/farmacologia , Vanadatos/química , Vanádio/farmacologia , Vanádio/metabolismo , Soroalbumina Bovina , Técnicas de Cultura de Células
8.
Environ Sci Pollut Res Int ; 30(37): 87783-87792, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37434053

RESUMO

Immunoglobulin A nephropathy (IgAN) is the most common type of glomerulonephritis in adults worldwide. Environmental metal exposure has been reported to be involved in the pathogenic mechanisms of kidney diseases, yet no further epidemiological study has been conducted to assess the effects of metal mixture exposure on IgAN risk. In this study, we conducted a matched case‒control design with three controls for each patient to investigate the association between metal mixture exposure and IgAN risk. A total of 160 IgAN patients and 480 healthy controls were matched for age and sex. Plasma levels of arsenic, lead, chromium, manganese, cobalt, copper, zinc, and vanadium were measured using inductively coupled plasma mass spectrometry. We used a conditional logistic regression model to assess the association between individual metals and IgAN risk, and a weighted quantile sum (WQS) regression model to analyze the effects of metal mixtures on IgAN risk. Restricted cubic splines were used to evaluate overall associations between plasma metal concentrations and estimated glomerular filtration rate (eGFR) levels. We observed that except for Cu, all the metals analyzed were nonlinearly associated with decreased eGFR, and higher concentrations of arsenic and lead were associated with elevated IgAN risk in both single-metal [3.29 (1.94, 5.57), 6.10 (3.39, 11.0), respectively] and multiple-metal [3.04 (1.66, 5.57), 4.70 (2.47, 8.97), respectively] models. Elevated manganese [1.76 (1.09, 2.83)] levels were associated with increased IgAN risk in the single-metal model. Copper was inversely related to IgAN risk in both single-metal [0.392 (0.238, 0.645)] and multiple-metal [0.357 (0.200, 0.638)] models. The WQS indices in both positive [2.04 (1.68, 2.47)] and negative [0.717 (0.603, 0.852)] directions were associated with IgAN risk. Lead, arsenic, and vanadium contributed significant weights (0.594, 0.195, and 0.191, respectively) in the positive direction; copper, cobalt, and chromium carried significant weights (0.538, 0.253, and 0.209, respectively). In conclusion, metal exposure was related to IgAN risk. Lead, arsenic, and copper were all significantly weighted factors of IgAN development, which may require further investigation.


Assuntos
Exposição Ambiental , Poluição Ambiental , Glomerulonefrite por IGA , Metais , Adulto , Humanos , Arsênio/metabolismo , Arsênio/toxicidade , Cromo/metabolismo , Cromo/toxicidade , Cobalto/metabolismo , Cobalto/toxicidade , Cobre/metabolismo , Cobre/toxicidade , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Poluição Ambiental/estatística & dados numéricos , Glomerulonefrite por IGA/induzido quimicamente , Manganês/metabolismo , Manganês/toxicidade , Metais/metabolismo , Metais/toxicidade , Vanádio/metabolismo , Vanádio/toxicidade , Masculino , Feminino
9.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310758

RESUMO

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Assuntos
Fibrose Pulmonar Idiopática , Vanádio , Masculino , Humanos , Camundongos , Animais , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Vanádio/toxicidade , Vanádio/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/patologia , Mamíferos
10.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354383

RESUMO

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Assuntos
Ascomicetos , Cloreto Peroxidase , Exophiala , Fontes Hidrotermais , Cloreto Peroxidase/genética , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanádio/metabolismo , Inteligência Artificial , Ascomicetos/genética
11.
J Hazard Mater ; 451: 131085, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870130

RESUMO

Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.


Assuntos
Antioxidantes , Glycine max , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glycine max/metabolismo , Óxido Nítrico/metabolismo , Vanádio/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Plântula
12.
Biomed Mater ; 18(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827708

RESUMO

Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.


Assuntos
Células-Tronco Mesenquimais , Titânio , Animais , Camundongos , Titânio/química , Alumínio/metabolismo , Vanádio/metabolismo , Interleucina-6/metabolismo , Microtomografia por Raio-X , Biomimética , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Camundongos Nus , Osteogênese , Diferenciação Celular , Polietilenoglicóis/química , Citocinas/metabolismo , DNA/metabolismo , Propriedades de Superfície , Osseointegração , Osteoblastos , Células Cultivadas
13.
Biol Trace Elem Res ; 201(11): 5169-5182, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36826713

RESUMO

Increasing evidence suggests that organic vanadium compounds are bioavailable and safe therapeutic agents with insulin-mimetic and insulin-enhancing features. The objective of the current study was to examine the effect of vanadium-enriched yeast (VEY) supplementation on the gene expression level of insulin receptor substrates and clinical manifestations of obese type 2 diabetic mellitus (T2DM) patients. In this randomized, double-blind, placebo-controlled clinical trial, 44 obese T2DM patients were randomly allocated into either VEY (0.9 mg/day vanadium pentoxide) or placebo group for 12 weeks. The mRNA expression level of protein tyrosine phosphatase 1B (PTP1B), phosphatase and tensin homolog (PTEN), mitogen-activated protein kinase (MAPK), ribosomal protein S6 kinase (S6K), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB) genes in the peripheral blood mononuclear cells, serum levels of metabolic parameters, anthropometric indices, as well as the quality of life, and dietary intake were collected at pre- and post-intervention phases. Analysis of covariance was performed to obtain the corresponding effect size. Results showed that VEY administration significantly decreased anthropometric indices and glycemic parameters and increased insulin sensitivity after adjusting for potential covariates (p < 0.05), in comparison to the placebo group. Additionally, VEY supplementation was significantly effective on MAPK, PTP1B, and NFƘB gene expression level, compared to the placebo group. No significant changes were noticed for dietary intake, quality of life, and lipid profile in the VEY group, compared to the placebo group. Overall, VEY supplementation can be considered as a promising safe adjunct therapy for improving anthropometric indices and glycemic parameters in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fermento Seco , Humanos , Vanádio/farmacologia , Vanádio/uso terapêutico , Vanádio/metabolismo , Saccharomyces cerevisiae/metabolismo , Receptor de Insulina/metabolismo , Glicemia , Leucócitos Mononucleares/metabolismo , Qualidade de Vida , Insulina/metabolismo , Método Duplo-Cego , Suplementos Nutricionais
14.
Sci Total Environ ; 870: 161834, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708832

RESUMO

Microbial techniques have been extensively used for the remediation of nitrate and V(V) co-contaminations, but the mechanisms of electron and substances transport and metabolism of co-contaminations under oligotrophic niche have been largely overlooked. This study quantified the electron transfer and consumption, substance transfer, and metabolic pathways in the nitrate and V(V) co-contamination system under oligotrophic condition to explore the underlying mechanisms by characterizing the products and elucidating conventional cognitive pathways. This study compared the composition of the precipitates under the conditions of sufficient and insufficient carbon sources using energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, and discovered the re-oxidation process of the already reduced V(IV). Electronic evidence for the re-oxidation process of V(IV) was also provided by electron transfer and quantitative analysis. Besides, this study found that the electron contribution ratio of NO3--N → NO2--N and V(V) → V(IV) reduction was 40.2:1. In addition, based on the functional prediction of PICRUSt 2, it was found that the utilization of intracellular reserve carbon source and enzymes in the transport chain were enhanced in oligotrophic microbiology niche. These results provide new insights into the stability of co-contamination reduction in oligotrophic microbiology niche and demonstrate a new mobilization pathway for V(V) in oligotrophic systems.


Assuntos
Nitratos , Vanádio , Vanádio/metabolismo , Elétrons , Transporte de Elétrons , Oxirredução
15.
Sci Total Environ ; 869: 161741, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36693574

RESUMO

Excessive vanadium (V) contamination is an attracting growing concern, which can negatively affect the health of human and ecosystems. But how V causes nephrotoxicity and the role of mitochondria-associated endoplasmic reticulum membrane (MAM) in V-induced nephrotoxicity have remained elusive. To explore the detailed mechanism and screen of potential effective drugs for V-evoked nephrotoxicity, a total of 72 ducks were divided into two groups, control group and V group (30 mg/kg V). Results showed that excessive V damaged kidney function of ducks including causing histopathological abnormality, biochemical makers derangement and oxidative stress. Then MAM of duck kidneys was extracted to investigate differentially expressed proteins (DEPs) under V exposure using proteomics analysis. Around 4240 MAM-localized proteins were identified, of which 412 DEPs showed dramatic changes, including 335 upregulated and 77 downregulated DEPs. On the basis of gene ontology (GO), string and KEGG database analysis, excessive V led to nephrotoxicity primarily by affecting MAM-mediated metabolic pathways, especially elevating the endoplasmic Reticulum (ER) proteostasis related pathway. Further validation analysis of the detected genes and proteins of ER proteostasis related pathway under V poisoning revealed a consistent relationship with proteome analysis, indicating that V disrupted MAM-mediated ER proteostasis. Accordingly, our data proved the critical role for MAM in V-evoked nephrotoxicity, particularly with MAM-mediated ER proteostasis, providing promising insights into the toxicological exploration mechanisms of V.


Assuntos
Mitocôndrias , Vanádio , Humanos , Mitocôndrias/metabolismo , Vanádio/metabolismo , Proteostase , Proteômica , Ecossistema , Retículo Endoplasmático/metabolismo
16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430713

RESUMO

The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.


Assuntos
Paracentrotus , Animais , Vanádio/farmacologia , Vanádio/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Desenvolvimento Embrionário , Gelatinases/metabolismo
17.
Inorg Chem ; 61(49): 19882-19889, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441974

RESUMO

Ascidians use a class of cysteine-rich proteins generally referred to as vanabins to reduce vanadium ions, one of the many biological processes that involve the redox conversion between disulfide and dithiolate mediated by transition-metal ions. To further understand the nature of disulfide/dithiolate exchange facilitated by a vanadium center, we report herein a six-coordinate non-oxido VIV complex containing an unbound disulfide moiety, [VIV(PS3″)(PS1″S-S)] (1) (PS3″ = [P(C6H3-3-Me3Si-2-S)3]3-, where PS1″S-S is a disulfide form of PS3″). Complex 1 is obtained from a reaction of previously reported [VV(PS3″)(PS2″SH)] (2) (PS2″SH = [P(C6H3-3-Me3Si-2-SH)(C6H3-3-Me3Si-2-S)2] with TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) via hydrogen atom transfer. Importantly, complex 1 can be reduced by two electrons to form an eight-coordinate VIV complex, [VIV(PS3″)2]2- (4). The reaction can be reversed through a two-electron oxidation process to regenerate complex 1. The redox pathways both proceed through a common intermediate, [V(PS3″)2]- (3), that has been previously reported as a resonance form of VV-dithiolate and a VIV-(thiolate)(thiyl-radical) species. This work demonstrates an unprecedented example of reversible disulfide/dithiolate interconversion mediated by a VIV center, as well as provides insights into understanding the function of VV reductases in vanabins.


Assuntos
Dissulfetos , Vanádio , Vanádio/metabolismo , Oxirredução , Elétrons , Hidrogênio
18.
Water Res ; 226: 119247, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270146

RESUMO

Vanadium (V) is a transitional metal that poses health risks to exposed humans. Microorganisms play an important role in remediating V contamination by reducing more toxic and mobile vanadate (V(V)) to less toxic and mobile V(IV). In this study, DNA-stable isotope probing (SIP) coupled with metagenomic-binning was used to identify microorganisms responsible for V(V) reduction and determine potential metabolic mechanisms in cultures inoculated with a V-contaminated river sediment. Anaeromyxobacter and Geobacter spp. were identified as putative V(V)-reducing bacteria, while Methanosarcina spp. were identified as putative V(V)-reducing archaea. The bacteria may use the two nitrate reductases NarG and NapA for respiratory V(V) reduction, as has been demonstrated previously for other species. It is proposed that Methanosarcina spp. may reduce V(V) via anaerobic methane oxidation pathways (AOM-V) rather than via respiratory V(V) reduction performed by their bacterial counterparts, as indicated by the presence of genes associated with anaerobic methane oxidation coupled with metal reduction in the metagenome assembled genome (MAG) of Methanosarcina. Briefly, methane may be oxidized through the "reverse methanogenesis" pathway to produce electrons, which may be further captured by V(V) to promote V(V) reduction. More specially, V(V) reduction by members of Methanosarcina may be driven by electron transport (CoMS-SCoB heterodisulfide reductase (HdrDE), F420H2 dehydrogenases (Fpo), and multi-heme c-type cytochrome (MHC)). The identification of putative V(V)-reducing bacteria and archaea and the prediction of their different pathways for V(V) reduction expand current knowledge regarding the potential fate of V(V) in contaminated sites.


Assuntos
Archaea , Metagenoma , Humanos , Archaea/genética , Archaea/metabolismo , Vanadatos/metabolismo , Vanádio/metabolismo , Ecossistema , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Metano/metabolismo , Methanosarcina/genética , Oxirredução , Isótopos , DNA/metabolismo
19.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293069

RESUMO

Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.


Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Metais Pesados , Transportadores de Ânions Orgânicos , Humanos , Animais , Níquel/metabolismo , Zinco/metabolismo , Cobre/metabolismo , Cádmio/metabolismo , Cobalto/metabolismo , Vanádio/metabolismo , Molibdênio/metabolismo , Alumínio/metabolismo , Cromo/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Titânio/metabolismo , Berílio/metabolismo , Ferro/metabolismo , Platina/metabolismo , Tálio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Mercúrio/toxicidade , Antioxidantes/metabolismo , Lipopolissacarídeos/metabolismo , Ecossistema , Apoferritinas/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Fígado/metabolismo , Poluentes Ambientais/metabolismo , Glutationa/metabolismo , Necrose/metabolismo , Glutamatos/metabolismo , Coativadores de Receptor Nuclear , Transportadores de Ânions Orgânicos/metabolismo , RNA Mensageiro/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142718

RESUMO

As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.


Assuntos
Herbicidas , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , DDT , Dieldrin/metabolismo , Herbicidas/metabolismo , Humanos , Manganês/metabolismo , Mitocôndrias/metabolismo , Doenças Neuroinflamatórias , Síndromes Neurotóxicas/patologia , Estresse Oxidativo , Paraquat , Doença de Parkinson/metabolismo , Praguicidas/metabolismo , Praguicidas/toxicidade , Fatores de Risco , Rotenona/metabolismo , Tricloroetanos/metabolismo , Vanádio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...