Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931612

RESUMO

Varroa mites, scientifically identified as Varroa destructor, pose a significant threat to beekeeping and cause one of the most destructive diseases affecting honey bee populations. These parasites attach to bees, feeding on their fat tissue, weakening their immune systems, reducing their lifespans, and even causing colony collapse. They also feed during the pre-imaginal stages of the honey bee in brood cells. Given the critical role of honey bees in pollination and the global food supply, controlling Varroa mites is imperative. One of the most common methods used to evaluate the level of Varroa mite infestation in a bee colony is to count all the mites that fall onto sticky boards placed at the bottom of a colony. However, this is usually a manual process that takes a considerable amount of time. This work proposes a deep learning approach for locating and counting Varroa mites using images of the sticky boards taken by smartphone cameras. To this end, a new realistic dataset has been built: it includes images containing numerous artifacts and blurred parts, which makes the task challenging. After testing various architectures (mainly based on two-stage detectors with feature pyramid networks), combination of hyperparameters and some image enhancement techniques, we have obtained a system that achieves a mean average precision (mAP) metric of 0.9073 on the validation set.


Assuntos
Aprendizado Profundo , Software , Varroidae , Animais , Varroidae/patogenicidade , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/fisiologia , Infestações por Ácaros/parasitologia , Criação de Abelhas/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805645

RESUMO

Honey bees use grooming to defend against the devastating parasite Varroa destructor Anderson and Trueman. We observed the grooming responses of individual bees from colonies previously chosen for high- and low-grooming behavior using a combination of mite mortality and mite damage. Our aim was to gain insight into specific aspects of grooming behavior to compare if high-grooming bees could discriminate between a standardized stimulus (chalk dust) and a stimulus of live Varroa mites and if bees from high-grooming colonies had greater sensitivity across different body regions than bees from low-grooming colonies. We hypothesized that individuals from high-grooming colonies would be more sensitive to both stimuli than bees from low-grooming colonies across different body regions and that bees would have a greater response to Varroa than a standardized irritant (chalk dust). Individuals from high-grooming colonies responded with longer bouts of intense grooming when either stimulus was applied to the head or thorax, compared to sham-stimulated controls, while bees from low-grooming colonies showed no differences between stimulated and sham-stimulated bees. Further, high-grooming bees from colonies with high mite damage exhibited greater grooming to Varroa than high-grooming colonies with only moderate mite damage rates. This study provides new insights into Varroa-specific aspects of grooming, showing that although a standardized stimulus (chalk dust) may be used to assess general grooming ability in individual bee grooming assays, it does not capture the same range of responses as a stimulus of Varroa. Thus, continuing to use Varroa mites in grooming assays should help select colonies with more precise sensitivity to Varroa.


Assuntos
Asseio Animal , Varroidae , Animais , Abelhas/parasitologia , Abelhas/fisiologia , Varroidae/fisiologia
3.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805657

RESUMO

Despite the use of various integrated pest management strategies to control the honey bee mite, Varroa destructor, varroosis remains the most important threat to honey bee colony health in many countries. In Canada, ineffective varroa control is linked to high winter colony losses and new treatment options, such as a summer treatment, are greatly needed. In this study, a total of 135 colonies located in 6 apiaries were submitted to one of these 3 varroa treatment strategies: (i) an Apivar® fall treatment followed by an oxalic acid (OA) treatment by dripping method; (ii) same as in (i) with a summer treatment consisting of formic acid (Formic Pro™); and (iii) same as in (i) with a summer treatment consisting of slow-release OA/glycerin pads (total of 27 g of OA/colony). Treatment efficacy and their effects on colony performance, mortality, varroa population, and the abundance of 6 viruses (acute bee paralysis virus [ABPV], black queen cell virus [BQCV], deformed wing virus variant A [DWV-A], deformed wing virus variant B [DWV-B], Israeli acute paralysis virus [IAPV], and Kashmir bee virus [KBV]) were assessed. We show that a strategy with a Formic Pro summer treatment tended to reduce the varroa infestation rate to below the economic fall threshold of 15 daily varroa drop, which reduced colony mortality significantly but did not reduce the prevalence or viral load of the 6 tested viruses at the colony level. A strategy with glycerin/OA pads reduced hive weight gain and the varroa infestation rate, but not below the fall threshold. A high prevalence of DWV-B was measured in all groups, which could be related to colony mortality.


Assuntos
Criação de Abelhas , Estações do Ano , Varroidae , Carga Viral , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/virologia , Criação de Abelhas/métodos , Acaricidas , Formiatos/farmacologia , Canadá
4.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805650

RESUMO

Honey bee parasites remain a critical challenge to management and conservation. Because managed honey bees are maintained in colonies kept in apiaries across landscapes, the study of honey bee parasites allows the investigation of spatial principles in parasite ecology and evolution. We used a controlled field experiment to study the relationship between population growth rate and virulence (colony survival) of the parasite Varroa destructor (Anderson and Trueman). We used a nested design of 10 patches (apiaries) of 14 colonies to examine the spatial scale at which Varroa population growth matters for colony survival. We tracked Varroa population size and colony survival across a full year and found that Varroa populations that grow faster in their host colonies during the spring and summer led to larger Varroa populations across the whole apiary (patch) and higher rates of neighboring colony loss. Crucially, this increased colony loss risk manifested at the patch scale, with mortality risk being related to spatial adjacency to colonies with fast-growing Varroa strains rather than with Varroa growth rate in the colony itself. Thus, within-colony population growth predicts whole-apiary virulence, demonstrating the need to consider multiple scales when investigating parasite growth-virulence relationships.


Assuntos
Interações Hospedeiro-Parasita , Dinâmica Populacional , Varroidae , Animais , Abelhas/parasitologia , Varroidae/fisiologia , Virulência , Criação de Abelhas
5.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805653

RESUMO

The life cycle of Varroa destructor, the ectoparasitic mite of honey bees (Apis mellifera), includes a dispersal phase, in which mites attach to adult bees for transport and feeding, and a reproductive phase, in which mites invade worker and drone brood cells just prior to pupation to reproduce while their bee hosts complete development. In this study, we wanted to determine whether increased nurse bee visitations of adjacent drone and worker brood cells would increase the likelihood of Varroa mites invading those cells. We also explored whether temporarily restricting the nurses' access to sections of worker brood for 2 or 4 h would subsequently cause higher nurse visitations, and thus, higher Varroa cell invasions. Temporarily precluding larvae from being fed by nurses subsequently led to higher Varroa infestation of those sections in some colonies, but this pattern was not consistent across colonies. Therefore, removing highly infested sections of capped worker brood could be further explored as a potential mechanical/cultural method for mite control. Our results provide more information on how nurse visitations affect the patterns of larval cell invasion by Varroa. Given that the mite's successful reproduction depends on the nurses' ability to visit and feed developing brood, more studies are needed to understand the patterns of Varroa mite invasion of drone and worker cells to better combat this pervasive honey bee parasite.


Assuntos
Larva , Varroidae , Animais , Abelhas/parasitologia , Varroidae/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/parasitologia , Interações Hospedeiro-Parasita
6.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805654

RESUMO

Managed honey bee (Apis mellifera L.) colonies in North America and Europe have experienced high losses in recent years, which have been linked to weather conditions, lack of quality forage, and high parasite loads, particularly the obligate brood parasite, Varroa destructor. These factors may interact at various scales to have compounding effects on honey bee health, but few studies have been able to simultaneously investigate the effects of weather conditions, landscape factors, and management of parasites. We analyzed a dataset of 3,210 survey responses from beekeepers in Pennsylvania from 2017 to 2022 and combined these with remotely sensed weather variables and novel datasets about seasonal forage availability into a Random Forest model to investigate drivers of winter loss. We found that beekeepers who used treatment against Varroa had higher colony survival than those who did not treat. Moreover, beekeepers who used multiple types of Varroa treatment had higher colony survival rates than those who used 1 type of treatment. Our models found weather conditions are strongly associated with survival, but multiple-treatment type colonies had higher survival across a broader range of climate conditions. These findings suggest that the integrated pest management approach of combining treatment types can potentially buffer managed honey bee colonies from adverse weather conditions.


Assuntos
Criação de Abelhas , Estações do Ano , Varroidae , Tempo (Meteorologia) , Animais , Abelhas/parasitologia , Varroidae/fisiologia , Criação de Abelhas/métodos , Pennsylvania , Controle de Pragas/métodos , Colapso da Colônia
7.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805656

RESUMO

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Assuntos
Glycine max , Varroidae , Zea mays , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Iowa , Varroidae/fisiologia , Criação de Abelhas , Praguicidas/toxicidade , Estudos Longitudinais , Pólen
8.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805647

RESUMO

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Assuntos
Acaricidas , Timol , Toluidinas , Varroidae , Animais , Toluidinas/farmacologia , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Timol/farmacologia , Criação de Abelhas/métodos
9.
Biol Lett ; 20(5): 20230600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715462

RESUMO

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Varroidae/virologia , Varroidae/fisiologia , Vírus de RNA/fisiologia , Vírus de RNA/genética , França/epidemiologia , Espécies Introduzidas , Dicistroviridae/genética , Dicistroviridae/fisiologia , Prevalência
10.
J Invertebr Pathol ; 204: 108125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705353

RESUMO

In La Réunion, the established honeybee subspecies Apis mellifera unicolor, an endemic subspecies of African lineage, is facing considerable challenges. Since the introduction of the Varroa destructor mite in 2017 high colony losses have been recorded. We investigated the dynamics of V. destructor and two viruses, the Deformed Wing Virus (DWV), known to be transmitted by the mite, and the Chronic Bee Paralysis Virus (CBPV), in A. m. unicolor. Colonies from two apiaries located at 300 and 900 m a.s.l were monitored twice for one year without any acaricide treatment. The brood area, V. destructor infestation rates, DWV and CBPV prevalence and load were recorded monthly. A. m. unicolor maintained brood rearing throughout the year. Varroa destructor infestation resulted in high colony mortality (up to 85 %) and high phoretic mite rates (up to 52 mites per hundred bees). The establishment of DWV in colonies occurred after that of V. destructor and the mite infestation rate had a significant effect on the virus prevalence and load. CBPV appeared only transiently throughout the surveys. The data showed that, in tropical colonies with permanent brood rearing, V. destructor and DWV can reach high levels, but are still subject to seasonal variations that appear to be influenced by environmental conditions. This suggests that beekeeping practices could be adapted by favouring sites and periods for transhumance or acaricide treatment.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Varroidae/fisiologia , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Vírus de Insetos , Espécies Introduzidas , Interações Hospedeiro-Parasita , Ilhas , Dicistroviridae/fisiologia
11.
PLoS One ; 19(5): e0302846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713668

RESUMO

The survival of the honey bee (Apis mellifera), which has a crucial role in pollination and ecosystem maintenance, is threatened by many pathogens, including parasites, bacteria, fungi and viruses. The ectoparasite Varroa destructor is considered the major cause of the worldwide decline in honey bee colony health. Although several synthetic acaricides are available to control Varroa infestations, resistant mites and side effects on bees have been documented. The development of natural alternatives for mite control is therefore encouraged. The study aims at exploring the effects of cinnamon and oregano essential oils (EOs) and of a mixed fruit cocktail juice on mite infestation levels and bee colony health. A multi-method study including hive inspection, mite count, molecular detection of fungal, bacterial and viral pathogens, analysis of defensin-1, hymenoptaecin and vitellogenin immune gene expression, colony density and honey production data, was conducted in a 20-hive experimental apiary. The colonies were divided into five groups: four treatment groups and one control group. The treatment groups were fed on a sugar syrup supplemented with cinnamon EO, oregano EO, a 1:1 mixture of both EOs, or a juice cocktail. An unsupplemented syrup was, instead, used to feed the control group. While V. destructor affected all the colonies throughout the study, no differences in mite infestation levels, population density and honey yield were observed between treatment and control groups. An overexpression of vitellogenin was instead found in all EO-treated groups, even though a significant difference was only found in the group treated with the 1:1 EO mixture. Viral (DWV, CBPV and BQCV), fungal (Nosema ceranae) and bacterial (Melissococcus plutonius) pathogens from both symptomatic and asymptomatic colonies were detected.


Assuntos
Infestações por Ácaros , Varroidae , Animais , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/virologia , Abelhas/efeitos dos fármacos , Óleos Voláteis/farmacologia
12.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636513

RESUMO

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Assuntos
Produtos Agrícolas , Polinização , Abelhas/fisiologia , Abelhas/parasitologia , Animais , Varroidae/fisiologia , Canadá , Estresse Fisiológico , Criação de Abelhas/métodos
13.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485887

RESUMO

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Assuntos
Criação de Abelhas , Infestações por Ácaros , Varroidae , Animais , Abelhas/parasitologia , Abelhas/fisiologia , Varroidae/fisiologia , Costa Rica , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Mel/análise , Comportamento de Nidação
14.
Exp Appl Acarol ; 92(4): 795-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478141

RESUMO

Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.


Assuntos
Larva , Varroidae , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Criação de Abelhas/métodos , Reprodução , Temperatura
15.
Exp Appl Acarol ; 92(3): 309-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401013

RESUMO

Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.


Assuntos
Acaricidas , Mutação , Piretrinas , Varroidae , Varroidae/genética , Varroidae/fisiologia , Animais , Piretrinas/farmacologia , Acaricidas/farmacologia , Turquia , Proteínas de Artrópodes/genética , Resistência a Inseticidas/genética , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Resistência a Medicamentos/genética , Canais de Sódio Disparados por Voltagem/genética
16.
Res Vet Sci ; 169: 105173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335895

RESUMO

Colony collapse disorder (CCD) has affected bees worldwide in recent decades, with southwestern Spain being no exception. This disorder is one of the main causes of Apis mellifera mortality and is believed to be caused by environmental, social and sanitary conditions. Dietary supplementation can help to improve some parameters of the general status and sanitary condition of bees, such as infestation by certain recurrent pathogens, including Varroa destructor and Nosema ceranae, by enhancing immune and social response. Thus, the aim of this study was to test a liquid hydrolysed protein supplement on the health and general status of the hive in several apiaries with access to the same natural food and under similar climatic conditions. We selected two groups of ten hives (supplemented by either placebo or protein) from five apiaries where the number of adult bees, amount of brood (open and operculated), honey and pollen reserves, infestation by V. destructor, N. ceranae, deformed wing virus (DWV) and chronic bee paralysis virus (CBPV) were measured. Additionally, we assess the expression of four immune system-related genes and a gene encoding vitellogenin. At the end of this work, treated hives showed a significant increase in open brood and a decrease in V. destructor infestation. Also, these hives showed a significant decrease in the mortality rate after the cold season. Therefore, supplementation with this product improved the health of the hive and could be a promising tool against bee colony loss.


Assuntos
Mel , Vírus de RNA , Urticária , Varroidae , Abelhas , Animais , Espanha/epidemiologia , Varroidae/fisiologia , Urticária/veterinária , Suplementos Nutricionais
17.
Sci Rep ; 14(1): 1148, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212601

RESUMO

The Varroa destructor mite is a parasitic threat to managed and feral honey bee colonies around the world. Beekeepers use miticides to eliminate Varroa in commercial hives, but these chemicals can diminish bee health and increase miticide resistance. In contrast, feral honey bees have developed multiple ways to counteract mites without chemical treatment. We compared mite levels, grooming habits, and mite-biting behavior between feral Africanized honey bees (genomically verified Apis mellifera scutellata hybrids) and managed Italian honey bees (A. mellifera ligustica). Surprisingly, there was no difference in mite infestation levels between scutellata-hybrids and managed bees over one year despite the regular use of miticides in managed colonies. We also found no differences in the social immunity responses of the two groups, as measured by their hygienic habits (through worker brood pin-kill assays), self-grooming, and mite-biting behavior. However, we provide the first report that both scutellata-hybrids and managed honey bees bite off mite chemosensory forelegs, which the mites use to locate brood cells for reproduction, to a significantly greater degree than other legs (a twofold greater reduction in foreleg length relative to the most anterior legs). Such biting may impair mite reproduction.


Assuntos
Acaricidas , Escabiose , Varroidae , Abelhas , Animais , Varroidae/fisiologia , Reprodução/fisiologia , Hábitos
18.
PLoS Pathog ; 19(12): e1011897, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150483

RESUMO

Honeybees play a major role in crop pollination, which supports the agricultural economy and international food supply. The colony health of honeybees is threatened by the parasitic mite Varroa destructor, which inflicts physical injury on the hosts and serves as the vector for variable viruses. Recently, it shows that V. destructor may also transmit bacteria through the feeding wound, yet it remains unclear whether the invading bacteria can exhibit pathogenicity to the honeybees. Here, we incidentally isolate Enterococcus faecalis, one of the most abundant bacteria in Varroa mites, from dead bees during our routine generation of microbiota-free bees in the lab. In vivo tests show that E. faecalis is only pathogenic in Apis mellifera but not in Apis cerana. The expression of antimicrobial peptide genes is elevated following infection in A. cerana. The gene-based molecular evolution analysis identifies positive selection of genes encoding Späetzle 4 (Spz4) in A. cerana, a signaling protein in the Toll pathway. The amino acid sites under positive selection are related to structural changes in Spz4 protein, suggesting improvement of immunity in A. cerana. The knock-down of Spz4 in A. cerana significantly reduces the survival rates under E. faecalis challenge and the expression of antimicrobial peptide genes. Our results indicate that bacteria associated with Varroa mites are pathogenic to adult bees, and the positively selected gene Spz4 in A. cerana is crucial in response to this mite-related pathogen.


Assuntos
Microbiota , Varroidae , Abelhas , Animais , Varroidae/fisiologia , Enterococcus faecalis/genética , Ligantes , Peptídeos Antimicrobianos
19.
J Virol ; 97(12): e0114923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966226

RESUMO

IMPORTANCE: The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.


Assuntos
Abelhas , Vetores de Doenças , Especificidade de Hospedeiro , Parasitos , Varroidae , Replicação Viral , Vírus , Animais , Abelhas/parasitologia , Abelhas/virologia , Parasitos/fisiologia , Parasitos/virologia , Varroidae/fisiologia , Varroidae/virologia , Vírus/crescimento & desenvolvimento , Vírus/patogenicidade , Interferência de RNA
20.
J Insect Physiol ; 151: 104571, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832840

RESUMO

Several concurrent stress factors can impact honey bee health and colony stability. Although a satisfactory knowledge of the effect of almost every single factor is now available, a mechanistic understanding of the many possible interactions between stressors is still largely lacking. Here we studied, both at the individual and colony level, how honey bees are affected by concurrent exposure to cold and parasitic infection. We found that the parasitic mite Varroa destructor, further than increasing the natural mortality of bees, can induce an anorexia that reduces their capacity to thermoregulate and thus react to sub-optimal temperatures. This, in turn, could affect the collective response of the bee colony to cold temperatures aggravating the effect already observed at the individual level. These results highlight the important role that biotic factors can have by shaping the response to abiotic factors and the strategic need to consider the potential interactions between stressors at all levels of the biological organization to better understand their impact.


Assuntos
Varroidae , Abelhas , Animais , Varroidae/fisiologia , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...