RESUMO
Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats.
Assuntos
Biocombustíveis/toxicidade , Indutores das Enzimas do Citocromo P-450/toxicidade , Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Etanol/toxicidade , Exposição por Inalação/efeitos adversos , Testes de Toxicidade Crônica/métodos , Poluentes Ocupacionais do Ar/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Câmaras de Exposição Atmosférica , Biomarcadores/sangue , Biotransformação/efeitos dos fármacos , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/sangue , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/química , Indução Enzimática/efeitos dos fármacos , Fluoxetina/sangue , Fluoxetina/farmacocinética , Ibuprofeno/sangue , Ibuprofeno/farmacocinética , Limoneno Hidroxilases/antagonistas & inibidores , Limoneno Hidroxilases/metabolismo , Masculino , Ratos Wistar , Verapamil/análogos & derivados , Verapamil/sangue , Verapamil/química , Verapamil/farmacocinéticaRESUMO
Toluene and verapamil are subject to extensive oxidative metabolism mediated by CYP enzymes, and their interaction can be stereoselective. In the present study we investigated the influence of toluene inhalation on the enantioselective kinetic disposition of verapamil and its metabolite, norverapamil, in rats. Male Wistar rats (n = 6 per group) received a single dose of racemic verapamil (10 mg/kg) orally at the fifth day of nose-only toluene or air (control group) inhalation for 6 h/day (25, 50, and 100 ppm). Serial blood samples were collected from the tail up to 6 h after verapamil administration. The plasma concentrations of verapamil and norverapamil enantiomers were analyzed by LC-MS/MS by using a Chiralpak AD column. Toluene inhalation did not influence the kinetic disposition of verapamil or norverapamil enantiomers (p > 0.05, Kruskal-Wallis test) in rats. The pharmacokinetics of verapamil was enantioselective in the control group, with a higher plasma proportion of the S-verapamil (AUC 250.8 versus 120.4 ng x h x mL(-1); p < or = 0.05, Wilcoxon test) and S-norverapamil (AUC 72.3 versus 52.3 ng x h x mL(-1); p < or = 0.05, Wilcoxon test). Nose-only exposure to toluene at 25, 50, or 100 ppm resulted in a lack of enantioselectivity for both verapamil and norverapamil. The study demonstrates the importance of the application of enantioselective methods in studies on the interaction between solvents and chiral drugs.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacocinética , Solventes/administração & dosagem , Tolueno/administração & dosagem , Verapamil/farmacocinética , Administração por Inalação , Administração Oral , Animais , Biotransformação/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/sangue , Bloqueadores dos Canais de Cálcio/química , Cromatografia Líquida , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Ratos , Ratos Wistar , Estereoisomerismo , Espectrometria de Massas em Tandem , Verapamil/administração & dosagem , Verapamil/análogos & derivados , Verapamil/sangue , Verapamil/químicaRESUMO
An enantioselective micromethod for the simultaneous analysis of verapamil (VER) and norverapamil (NOR) in plasma was developed, validated and applied to the study of the kinetic disposition of VER and NOR after the administration of a single oral dose of racemic-VER to rats. VER, NOR and the internal standard (paroxetine) were extracted from only 100-microL plasma samples using n-hexane and the enantiomers were resolved on a Chiralpak AD column using n-hexane:isopropanol:ethanol:diethylamine (88:6:6:0.1) as the mobile phase. The analyses were performed in the selected reaction monitoring mode. Transitions 456>166 for VER enantiomers, 441>166 for NOR enantiomers and 330>193 for the internal standard were monitored and the method had a total chromatographic run time of 12 min. The method allows the determination of VER and NOR enantiomers at plasma levels as low as 1.0 ng/mL. Racemic VER hydrochloride (10mg/kg) was given to male Wistar rats by gavage and blood samples were collected from 0 to 6.0 h (n=6 at each time point). The concentration of (-)-(S)-VER was three folds higher than (+)-(R)-VER, with an AUC ratio (-)/(+) of 2.66. Oral clearance values were 12.17 and 28.77 L/h/kg for (-)-(S)-VER and (+)-(R)-VER, respectively. The pharmacokinetic parameters of NOR were not shown to be enantioselective.