Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Int J Biol Sci ; 20(9): 3515-3529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993565

RESUMO

Impaired angiogenesis is a major factor contributing to delayed wound healing in diabetes. Dysfunctional mitochondria promote the formation of neutrophil extracellular traps (NETs), obstructing angiogenesis during wound healing. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in promoting tissue repair and regeneration in diabetes; however, the precise pathways involved in this process remain unclear. In this study, NET-induced ferroptosis of endothelial cells (ECs) and angiogenesis were assessed in diabetic wound samples from both patients and animal models. In vitro and in vivo experiments were performed to examine the regulatory mechanisms of NETs in ECs using specific inhibitors and gene-knockout mice. MSC-EVs encapsulating dysfunctional mitochondria were used to trigger mitochondrial fusion and restore mitochondrial function in neutrophils to suppress NET formation. Angiogenesis in wound tissue was evaluated using color laser Doppler imaging and vascular density analysis. Wound healing was evaluated via macroscopic analysis and histological evaluation of the epithelial gap. NET-induced ferroptosis of ECs was validated as a crucial factor contributing to the impairment of angiogenesis in diabetic wounds. Mechanistically, NETs regulated ferroptosis by suppressing the PI3K/AKT pathway. Furthermore, MSC-EVs transferred functional mitochondria to neutrophils in wound tissue, triggered mitochondrial fusion, and restored mitochondrial function, thereby reducing NET formation. These results suggest that inhibiting NET formation and EC ferroptosis or activating the PI3K/AKT pathway can remarkably improve wound healing. In conclusion, this study reveals a novel NET-mediated pathway involved in wound healing in diabetes and suggests an effective therapeutic strategy for accelerating wound healing.


Assuntos
Células Endoteliais , Armadilhas Extracelulares , Vesículas Extracelulares , Ferroptose , Células-Tronco Mesenquimais , Cicatrização , Animais , Ferroptose/fisiologia , Cicatrização/fisiologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Camundongos , Humanos , Células Endoteliais/metabolismo , Armadilhas Extracelulares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Mitocôndrias/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo
2.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984951

RESUMO

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Circular , Receptor IGF Tipo 1 , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Humanos , Células-Tronco/metabolismo , Masculino , Regulação da Expressão Gênica , Cicatrização/genética , Hipóxia Celular/genética , Transdução de Sinais , Regulação para Cima/genética , Neovascularização Fisiológica/genética
3.
Theranostics ; 14(9): 3583-3602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948067

RESUMO

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Assuntos
Apoptose , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Osteoporose/terapia , Osteoporose/metabolismo , Camundongos , Feminino , Osteogênese/fisiologia , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Proliferação de Células , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Ovariectomia , Proteômica , Transdução de Sinais
4.
Theranostics ; 14(8): 3358-3384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855176

RESUMO

With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Parkinson , Células-Tronco , Acidente Vascular Cerebral , Humanos , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Animais , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco/métodos
5.
Int J Med Sci ; 21(8): 1529-1540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903926

RESUMO

Introduction: Skin, being the body's largest organ, is susceptible to injuries. Despite the adoption of common treatments such as debridement, wound dressing, and infection control measures for skin injuries, the outcomes remain unsatisfactory, especially in diabetic patients or elderly patients. The use of adipose stem cell-derived apoptotic extracellular vesicles (apoEVs-ASCs) has been shown great therapeutic potential in wound repair. The effect of the donor age on the biological properties and functions of apoEVs-ASCs has not been reported. Methods: In this study, we isolated apoEVs-ASCs from young and aged rats. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied for the characteristics of apoEVs-ASCs. For aged and young apoEVs-ASCs groups, the proliferative and migration abilities in vitro, and wound healing function in vivo were contrastively evaluated and quantified for statistical analysis. Results: Our results showed that both young and aged apoEVs-ASCs induced skin healing and reduced scar formation. In addition, young apoEVs-ASCs had significantly higher proliferation, migration of fibroblasts and endothelial cells, and increased neo-angiogenesis ability, when compared with that of aged apoEVs-ASCs. Conclusion: Young apoEVs-ASCs should be employed for wound repair, which is associated with its superior promoting effect on wound healing.


Assuntos
Apoptose , Proliferação de Células , Vesículas Extracelulares , Pele , Cicatrização , Animais , Cicatrização/fisiologia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Ratos , Pele/lesões , Pele/patologia , Tecido Adiposo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Humanos , Masculino , Movimento Celular , Fatores Etários , Regeneração/fisiologia , Ratos Sprague-Dawley
6.
Cells ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891122

RESUMO

Temporomandibular disorders (TMDs) are a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and associated structures. Mesenchymal stromal/stem cells (MSCs) have emerged as a promising therapy for TMJ repair. This systematic review aims to consolidate findings from the preclinical animal studies evaluating MSC-based therapies, including MSCs, their secretome, and extracellular vesicles (EVs), for the treatment of TMJ cartilage/osteochondral defects and osteoarthritis (OA). Following the PRISMA guidelines, PubMed, Embase, Scopus, and Cochrane Library databases were searched for relevant studies. A total of 23 studies involving 125 mice, 149 rats, 470 rabbits, and 74 goats were identified. Compliance with the ARRIVE guidelines was evaluated for quality assessment, while the SYRCLE risk of bias tool was used to assess the risk of bias for the studies. Generally, MSC-based therapies demonstrated efficacy in TMJ repair across animal models of TMJ defects and OA. In most studies, animals treated with MSCs, their derived secretome, or EVs displayed improved morphological, histological, molecular, and behavioral pain outcomes, coupled with positive effects on cellular proliferation, migration, and matrix synthesis, as well as immunomodulation. However, unclear risk in bias and incomplete reporting highlight the need for standardized outcome measurements and reporting in future investigations.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transtornos da Articulação Temporomandibular , Articulação Temporomandibular , Animais , Articulação Temporomandibular/patologia , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Transtornos da Articulação Temporomandibular/terapia , Humanos , Osteoartrite/terapia , Osteoartrite/patologia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças
7.
Circ Res ; 135(1): 198-221, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900854

RESUMO

From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Doenças Cardiovasculares/terapia
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892376

RESUMO

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Doenças Cardiovasculares/terapia , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Células-Tronco/citologia
9.
Nat Commun ; 15(1): 4870, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849333

RESUMO

Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Separação Celular/métodos , Masculino
10.
Brain Res Bull ; 214: 110999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851436

RESUMO

Endogenous brain repair occurs following an ischemic stroke but is transient, thus unable to fully mount a neuroprotective response against the evolving secondary cell death. Finding a treatment strategy that may render robust and long-lasting therapeutic effects stands as a clinically relevant therapy for stroke. Extracellular vesicles appear to be upregulated after stroke, which may represent a candidate target for neuroprotection. In this study, we probed whether transplanted stem cells could enhance the expression of extracellular vesicles to afford stable tissue remodeling in the ischemic stroke brain. Aged rats were initially exposed to the established ischemic stroke model of middle cerebral artery occlusion then received intravenous delivery of either bone marrow-derived mesenchymal stem cell transplantation or vehicle. A year later, the animals were assayed for brain damage, inflammation, and extracellular vesicle expression. Our findings revealed that while core infarction was not reduced, the stroke animals transplanted with stem cells displayed a significant reduction in peri-infarct cell loss that coincided with downregulated Iba1-labeled inflammatory cells and upregulated CD63-positive extracellular vesicles that appeared to be co-localized with GFAP-positive astrocytes. Interestingly, grafted stem cells were not detected at one year post-transplantation period, suggesting that the extracellular vesicles likely originated within the host brain. That long-lasting functional benefits persisted in the absence of surviving transplanted stem cells, but with upregulation of endogenous extracellular vesicles, advances the concept that transplantation of stem cells acutely after stroke propels host extracellular vesicles to the ischemic brain, altogether promoting chronic brain remodeling.


Assuntos
Encéfalo , Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Astrócitos/metabolismo
11.
Commun Biol ; 7(1): 514, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710749

RESUMO

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Assuntos
Lesão Pulmonar Aguda , Anexina A1 , Células Epiteliais , Vesículas Extracelulares , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Transdução de Sinais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Anexina A1/metabolismo , Anexina A1/genética , Animais , Camundongos , Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/genética , Células Epiteliais/metabolismo , Brônquios/metabolismo , Brônquios/citologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Citocinas/metabolismo , Células THP-1
12.
Kaohsiung J Med Sci ; 40(6): 520-529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38712483

RESUMO

Autoimmune disease is characterized by the proliferation of harmful immune cells, inducing tissue inflammation and ultimately causing organ damage. Current treatments often lack specificity, necessitating high doses, prolonged usage, and high recurrence rates. Therefore, the identification of innovative and safe therapeutic strategies is urgently required. Recent preclinical studies and clinical trials on inflammatory and autoimmune diseases have evidenced the immunosuppressive properties of mesenchymal stromal cells (MSCs). Studies have demonstrated that extracellular vesicles (EV) derived from MSCs can mitigate abnormal autoinflammation while maintaining safety within the diseased microenvironment. This study conducted a systematic review to elucidate the crucial role of MSC-EVs in alleviating autoimmune diseases, particularly focusing on their impact on the underlying mechanisms of autoimmune conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). By specifically examining the regulatory functions of microRNAs (miRNAs) derived from MSC-EVs, the comprehensive study aimed to enhance the understanding related to disease mechanisms and identify potential diagnostic markers and therapeutic targets for these diseases.


Assuntos
Doenças Autoimunes , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Doenças Autoimunes/terapia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Artrite Reumatoide/terapia , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Animais , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Imunomodulação
13.
ACS Biomater Sci Eng ; 10(6): 3868-3882, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703236

RESUMO

The reconstruction of bone defects has been associated with severe challenges worldwide. Nowadays, bone marrow mesenchymal stem cell (BMSC)-based cell sheets have rendered this approach a promising way to facilitate osteogenic regeneration in vivo. Extracellular vesicles (EVs) play an essential role in intercellular communication and execution of various biological functions and are often employed as an ideal natural endogenous nanomedicine for restoring the structure and functions of damaged tissues. The perception of polymorphonuclear leukocytes (neutrophils, PMNs) as indiscriminate killer cells is gradually changing, with new evidence suggesting a role for these cells in tissue repair and regeneration, particularly in the context of bone healing. However, the role of EVs derived from PMNs (PMN-EVs) in bone regeneration remains largely unknown, with limited research being conducted on this aspect. In the current study, we investigated the effects of PMN-EVs on BMSCs and the underlying molecular mechanisms as well as the potential application of PMN-EVs in bone regeneration. Toward this end, BMSC-based cell sheets with integrated PMN-EVs (BS@PMN-EVs) were developed for bone defect regeneration. PMN-EVs were found to significantly enhance the proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, BS@PMN-EVs were found to significantly accelerate bone regeneration in vivo by enhancing the maturation of the newly formed bone in rat calvarial defects; this is likely attributable to the effect of PMN-EVs in promoting the expression of key osteogenic proteins such as SOD2 and GJA1 in BMSCs. In conclusion, our findings demonstrate the crucial role of PMN-EVs in promoting the osteogenic differentiation of BMSCs during bone regeneration. Furthermore, this study proposes a novel strategy for enhancing bone repair and regeneration via the integration of PMN-EVs with BMSC-based cell sheets.


Assuntos
Regeneração Óssea , Diferenciação Celular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Neutrófilos , Osteogênese , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/transplante , Regeneração Óssea/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Animais , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Neutrófilos/citologia , Ratos , Ratos Sprague-Dawley , Masculino , Proliferação de Células , Humanos
14.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786076

RESUMO

Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.


Assuntos
Doenças Cardiovasculares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Doenças Cardiovasculares/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos
15.
Life Sci ; 350: 122747, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797364

RESUMO

AIMS: To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS: There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE: Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos
16.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802896

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Isocitrato Desidrogenase , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Movimento Celular
17.
Mol Pharm ; 21(6): 2637-2658, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38728585

RESUMO

To date, the widespread implementation of therapeutic strategies for the treatment of chronic wounds, including debridement, infection control, and the use of grafts and various dressings, has been time-consuming and accompanied by many challenges, with definite success not yet achieved. Extensive studies on mesenchymal stem cells (MSCs) have led to suggestions for their use in treating various diseases. Given the existing barriers to utilizing such cells and numerous pieces of evidence indicating the crucial role of the paracrine signaling system in treatments involving MSCs, extracellular vesicles (EVs) derived from these cells have garnered significant attention in treating chronic wounds in recent years. This review begins with a general overview of current methods for chronic wound treatment, followed by an exploration of EV structure, biogenesis, extraction methods, and characterization. Subsequently, utilizing databases such as Google Scholar, PubMed, and ScienceDirect, we have explored the latest findings regarding the role of EVs in the healing of chronic wounds, particularly diabetic and burn wounds. In this context, the role and mode of action of these nanoparticles in healing chronic wounds through mechanisms such as oxygen level elevation, oxidative stress damage reduction, angiogenesis promotion, macrophage polarization assistance, etc., as well as the use of EVs as carriers for engineered nucleic acids, have been investigated. The upcoming challenges in translating EV-based treatments for healing chronic wounds, along with possible approaches to address these challenges, are discussed. Additionally, clinical trial studies in this field are also covered.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Cicatrização , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cicatrização/fisiologia , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Doença Crônica , Ensaios Clínicos como Assunto , Queimaduras/terapia
18.
Function (Oxf) ; 5(3): zqae012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706963

RESUMO

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Humanos , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Animais , Técnicas de Cultura de Células/métodos , MicroRNAs/metabolismo , MicroRNAs/genética
19.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711334

RESUMO

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Miócitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Animais , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Modelos Animais de Doenças , Neovascularização Fisiológica , Células Cultivadas
20.
J Extracell Vesicles ; 13(5): e12433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738585

RESUMO

Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested. In this scoping review, we searched PubMed and other databases up to 31 December 2023 and, starting from 13,567 records, we selected 40 pertinent published studies testing EVs as therapeutics in humans. The analysis of those 40 studies shows that they are all small pilot trials with a large heterogeneity in terms of administration route and target disease. Moreover, the absence of a placebo control in most of the studies, the predominant local application of EV formulations and the inconsistent administration dose metric still impede comparison across studies and firm conclusions about EV safety and efficacy. On the other hand, the recording of some promising outcomes strongly calls out for well-designed larger studies to test EVs as an alternative approach to treat human diseases with no or few therapeutic options.


Assuntos
Vesículas Extracelulares , Animais , Humanos , Comunicação Celular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...