Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.435
Filtrar
1.
Sci Rep ; 14(1): 14644, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918479

RESUMO

Viral glycoproteins mediate entry into host cells, thereby dictating host range and pathogenesis. In addition, they constitute the principal target of neutralizing antibody responses, making them important antigens in vaccine development. Recombinant vesicular stomatitis virus (VSV) encoding foreign glycoproteins can provide a convenient and safe surrogate system to interrogate the function, evolution, and antigenicity of viral glycoproteins from viruses that are difficult to manipulate or those requiring high biosafety level containment. However, the production of recombinant VSV can be technically challenging. In this work, we present an efficient and robust plasmid-based system for the production of recombinant VSV encoding foreign glycoproteins. We validate the system using glycoproteins from different viral families, including arenaviruses, coronaviruses, and hantaviruses, as well as highlight their utility for studying the effects of mutations on viral fitness. Overall, the methods described herein can facilitate the study of both native and recombinant VSV encoding foreign glycoproteins and can serve as the basis for the production of VSV-based vaccines.


Assuntos
Glicoproteínas , Plasmídeos , Plasmídeos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Animais , Humanos , Vesiculovirus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Células HEK293
2.
Nat Commun ; 15(1): 5442, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937436

RESUMO

Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.


Assuntos
Antígenos de Neoplasias , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Microambiente Tumoral , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Terapia Viral Oncolítica/métodos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Microambiente Tumoral/imunologia , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/imunologia , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T/imunologia , Feminino , Vesiculovirus/imunologia , Vesiculovirus/genética
3.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750591

RESUMO

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Assuntos
Células T Matadoras Naturais , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Feminino , Camundongos , Células T Matadoras Naturais/imunologia , Terapia Viral Oncolítica/métodos , Humanos , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Imunoterapia/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Terapia Combinada , Metástase Neoplásica , Vesiculovirus/genética , Células Dendríticas/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Modelos Animais de Doenças
4.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702887

RESUMO

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Assuntos
Vesiculovirus , Animais , Humanos , Camundongos , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
5.
J Autoimmun ; 146: 103230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754237

RESUMO

Neonatal Fc receptor (FcRn) recycles immunoglobulin G, and inhibition of FcRn is used clinically for treatment of autoimmune diseases. In this work, using the vesicular stomatitis virus (VSV) mouse infection model system, we determined the role of FcRn during virus infection. While induction of neutralizing antibodies and long-term protection of these antibodies was hardly affected in FcRn deficient mice, FcRn deficiency limited the amount of natural IgG (VSV-specific) antibodies. Lack of natural antibodies (nAbs) limited early control of VSV in macrophages, accelerated propagation of virus in several organs, led to the spread of VSV to the neural tissue resulting in fatal outcomes. Adoptive transfer of natural IgG into FcRn deficient mice limited early propagation of VSV in FcRn deficient mice and enhanced survival of FcRn knockout mice. In line with this, vaccination of FcRn mice with very low dose of VSV prior to infection similarly prevented death after infection. In conclusion we determined the importance of nAbs during VSV infection. Lack of FcRn limited nAbs and thereby enhanced the susceptibility to virus infection.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Camundongos Knockout , Receptores Fc , Estomatite Vesicular , Animais , Camundongos , Imunoglobulina G/imunologia , Receptores Fc/imunologia , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Estomatite Vesicular/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Vesiculovirus/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Modelos Animais de Doenças , Transferência Adotiva , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
6.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38812326

RESUMO

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Raios Ultravioleta , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos , Humanos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Vacinas de Produtos Inativados/imunologia
7.
J Virol ; 98(5): e0195723, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557247

RESUMO

Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.


Assuntos
Alphacoronavirus , Internalização do Vírus , Replicação Viral , Animais , Humanos , Camundongos , Coelhos , Alphacoronavirus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Infecções por Coronavirus/prevenção & controle , Células HEK293 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Vacinas Virais/imunologia , Vacinas Virais/genética
8.
Arch Toxicol ; 98(7): 2185-2197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607375

RESUMO

The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a pandemic, prompting rapid vaccine development. Although vaccines are effective, the occurrence of rare adverse events following vaccination highlights the necessity of determining whether the benefits outweigh the risks posed by the infection itself. The recombinant Vesicular Stomatitis Virus (rVSV) platform is a promising vector for vaccines against emerging viruses. However, limited studies have evaluated the genotoxicity and safety pharmacology of this viral vector vaccine, which is crucial to ensure the safety of vaccines developed using this platform. Hence, the present study aimed to assess the genotoxicity and safety pharmacology of the rVSVInd(GML)-mspSGtc COVID-19 vaccine using micronucleus and comet assays, as well as neurobehavioral, body temperature, respiratory, and cardiovascular assessments in Sprague-Dawley rats and beagle dogs. The intramuscular administration of rVSVInd(GML)-mspSGtc at doses up to 1.5 × 109 PFU/animal did not increase the number of bone marrow micronucleated polychromatic erythrocytes or cause liver DNA damage. Additionally, it had no significant impact on neurobehavioral functions in rats and showed marginal temporary changes in body temperature, respiratory rate, heart rate, and electrocardiogram parameters in rats and dogs, all of which resolved within 24 h. Overall, following genotoxicity and pharmacological safety assessments, rVSVInd(GML)-mspSGtc displayed no notable systemic adverse effects in rats and dogs, suggesting its potential as a vaccine candidate for human clinical trials.


Assuntos
Vacinas contra COVID-19 , Testes para Micronúcleos , Ratos Sprague-Dawley , SARS-CoV-2 , Animais , Cães , Vacinas contra COVID-19/toxicidade , Ratos , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/prevenção & controle , Feminino , Dano ao DNA/efeitos dos fármacos , Ensaio Cometa , Vesiculovirus/efeitos dos fármacos , Vacinas Sintéticas/imunologia , Temperatura Corporal/efeitos dos fármacos
9.
Dis Aquat Organ ; 158: 101-114, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661141

RESUMO

Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.


Assuntos
Glutamina , Vesiculovirus , Replicação Viral , Animais , Glutamina/metabolismo , Vesiculovirus/fisiologia , Doenças dos Peixes/virologia , Metabolômica , Linhagem Celular , Ictaluridae
10.
Emerg Infect Dis ; 30(5): 1004-1008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666640

RESUMO

We evaluated the in vitro effects of lyophilization for 2 vesicular stomatitis virus-based vaccines by using 3 stabilizing formulations and demonstrated protective immunity of lyophilized/reconstituted vaccine in guinea pigs. Lyophilization increased stability of the vaccines, but specific vesicular stomatitis virus-based vaccines will each require extensive analysis to optimize stabilizing formulations.


Assuntos
Modelos Animais de Doenças , Liofilização , Estomatite Vesicular , Vacinas Virais , Animais , Cobaias , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Eficácia de Vacinas , Vírus da Estomatite Vesicular Indiana/imunologia
12.
Virol Sin ; 39(3): 434-446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556051

RESUMO

The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.


Assuntos
Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Mesocricetus , Animais , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/patologia , Ebolavirus/genética , Ebolavirus/patogenicidade , Feminino , Humanos , Vesiculovirus/genética , Vesiculovirus/patogenicidade , Anticorpos Antivirais/sangue , Cricetinae , Carga Viral , Glicoproteínas/genética , Glicoproteínas/imunologia
13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460951

RESUMO

Snakehead vesiculovirus (SHVV) is one of the primary pathogens responsible for viral diseases in the snakehead fish. A TaqMan-based real-time PCR assay was established for the rapid detection and quantification of SHVV in this study. Specific primers and fluorescent probes were designed for phosphoprotein (P) gene, and after optimizing the reaction conditions, the results indicated that the detection limit of this method could reach 37.1 copies, representing a 100-fold increase in detection sensitivity compared to RT-PCR. The specificity testing results revealed that this method exhibited no cross-reactivity with ISKNV, LMBV, RSIV, RGNNV, GCRV, and CyHV-2. Repetition experiments demonstrated that both intra-batch and inter-batch coefficients of variation were not higher than 1.66%. Through in vitro infection experiments monitoring the quantitative changes of SHVV in different tissues, the results indicated that the liver and spleen exhibited the highest viral load at 3 poi. The TaqMan-based real-time PCR method established in this study exhibits high sensitivity, excellent specificity, and strong reproducibility. It can be employed for rapid detection and viral load monitoring of SHVV, thus providing a robust tool for the clinical diagnosis and pathogen research of SHVV.


Assuntos
Doenças dos Peixes , Iridoviridae , Perciformes , Infecções por Rhabdoviridae , Animais , Perciformes/genética , Vesiculovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Peixes/diagnóstico , Reprodutibilidade dos Testes , Iridoviridae/genética , Sensibilidade e Especificidade
14.
PLoS One ; 19(3): e0290672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483897

RESUMO

Viral and cellular particles too large to freely diffuse have two different types of mobility in the eukaryotic cell cytoplasm: directed motion mediated by motor proteins moving along cytoskeletal elements with the particle as its load, and motion in random directions mediated by motor proteins interconnecting cytoskeletal elements. The latter motion is referred to as "active diffusion." Mechanisms of directed motion have been extensively studied compared to mechanisms of active diffusion, despite the observation that active diffusion is more common for many viral and cellular particles. Our previous research showed that active diffusion of vesicular stomatitis virus (VSV) ribonucleoproteins (RNPs) in the cytoplasm consists of hopping between traps and that actin filaments and myosin II motors are components of the hop-trap mechanism. This raises the question whether similar mechanisms mediate random motion of larger particles with different physical and biological properties. Live-cell fluorescence imaging and a variational Bayesian analysis used in pattern recognition and machine learning were used to determine the molecular mechanisms of random motion of VSV inclusion bodies and cellular early endosomes. VSV inclusion bodies are membraneless cellular compartments that are the major sites of viral RNA synthesis, and early endosomes are representative of cellular membrane-bound organelles. Like VSV RNPs, inclusion bodies and early endosomes moved from one trapped state to another, but the distance between states was inconsistent with hopping between traps, indicating that the apparent state-to-state movement is mediated by trap movement. Like VSV RNPs, treatment with the actin filament depolymerizing inhibitor latrunculin A increased VSV inclusion body mobility by increasing the size of the traps. In contrast neither treatment with latrunculin A nor depolymerization of microtubules by nocodazole treatment affected the size of traps that confine early endosome mobility, indicating that intermediate filaments are likely major trap components for these cellular organelles.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Tiazolidinas , Estomatite Vesicular , Humanos , Teorema de Bayes , Endossomos/metabolismo , Corpos de Inclusão , Vesículas Transportadoras , Estomatite Vesicular/metabolismo , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus
15.
Fish Shellfish Immunol ; 148: 109466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432538

RESUMO

To evade host antiviral response, viruses have evolved to take advantage of their noncoding RNAs (ncRNAs). Snakehead vesiculovirus (SHVV), a newly isolated fish rhabdovirus from diseased hybrid snakehead, has caused high mortality to the cultured snakehead fish during the past years in China. However, little is known about the mechanisms of its pathogenicity. Our study revealed that overexpression of the 30-nt leader RNA promoted SHVV replication. RNA-protein binding investigation revealed that SHVV leader RNA could interact with host 40S ribosomal protein S8 (RPS8) and 60S ribosomal protein L13a (L13a). Furthermore, we found that SHVV infection upregulated RPS8 and L13a, and in turn, overexpression of RPS8 or L13a inhibited, while knockdown of RPS8 or L13a promoted, SHVV replication, suggesting that RPS8 and L13a acted as host antiviral factors in response to SHVV infection. In addition, our study revealed that RPS8- or L13a-mediated inhibition of SHVV replication could be restored by co-transfection with leader RNA, suggesting that the interaction between leader RNA and RPS8 or L13a might affect the anti-SHVV effects of RPS8 and L13a. Taken together, these results suggest that SHVV leader RNA can interact with the host antiviral factors RPS8 and L13a, and promote SHVV replication. This study provides a better understanding of the molecular mechanism of the pathogenesis of SHVV and a potential antiviral strategy against SHVV infection.


Assuntos
Perciformes , Animais , Perciformes/fisiologia , Vesiculovirus/genética , RNA Viral/genética , Replicação Viral , Antivirais/farmacologia
16.
J Virol ; 98(3): e0162723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305150

RESUMO

Ebola virus disease (EVD) caused by Ebola virus (EBOV) is a severe, often fatal, hemorrhagic disease. A critical component of the public health response to curb EVD epidemics is the use of a replication-competent, recombinant vesicular stomatitis virus (rVSV)-vectored Ebola vaccine, rVSVΔG-ZEBOV-GP (ERVEBO). In this Gem, we will discuss the past and ongoing development of rVSVΔG-ZEBOV-GP, highlighting the importance of basic science and the strength of public-private partnerships to translate fundamental virology into a licensed VSV-vectored Ebola vaccine.


Assuntos
Vacinas contra Ebola , Ebolavirus , Vetores Genéticos , Doença pelo Vírus Ebola , Vesiculovirus , Humanos , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Ebolavirus/genética , Ebolavirus/imunologia , Vetores Genéticos/genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vesiculovirus/genética , Parcerias Público-Privadas
17.
Appl Microbiol Biotechnol ; 108(1): 240, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413399

RESUMO

Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification. Using suspension BHK-21 cells and a fusogenic oncolytic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV), a modified alternating tangential flow device (mATF) or tangential flow depth filtration (TFDF) systems were used for cell retention. As the hollow fibers of the former are characterized by a large internal lumen (0.75 mm; pore size 0.65 µm), membrane blocking by the multi-nucleated syncytia formed during infection could be prevented. However, virus particles were completely retained. In contrast, the TFDF filter unit (lumen 3.15 mm, pore size 2-5 µm) allowed not only to achieve high viable cell concentrations (VCC, 16.4-20.6×106 cells/mL) but also continuous vector harvesting and clarification. Compared to an optimized batch process, 11-fold higher infectious virus titers were obtained in the clarified permeate (maximum 7.5×109 TCID50/mL). Using HEK293-SF cells and a rVSV vector expressing a green fluorescent protein, perfusion cultivations resulted in a maximum VCC of 11.3×106 cells/mL and infectious virus titers up to 7.1×1010 TCID50/mL in the permeate. Not only continuous harvesting but also clarification was possible. Although the cell-specific virus yield decreased relative to a batch process established as a control, an increased space-time yield was obtained. KEY POINTS: • Viral vector production using a TFDF perfusion system resulted in a 460% increase in space-time yield • Use of a TFDF system allowed continuous virus harvesting and clarification • TFDF perfusion system has great potential towards the establishment of an intensified vector production.


Assuntos
Estomatite Vesicular , Humanos , Animais , Células HEK293 , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Técnicas de Cultura de Células/métodos , Vetores Genéticos
18.
Parasit Vectors ; 17(1): 93, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414030

RESUMO

BACKGROUND: Vesicular stomatitis virus (VSV), a vector-borne pathogen of livestock, emerges periodically in the western US. In New Mexico (NM), US, most cases occur close to the Rio Grande River, implicating black flies (Simulium spp.) as a possible vector. In 2020, VS cases were reported in NM from April to May, although total black fly abundance remained high until September. We investigated the hypothesis that transience of local VSV transmission results from transient abundance of key, competent black fly species. Additionally, we investigated whether irrigation canals in southern NM support a different community of black flies than the main river. Lastly, to gain insight into the source of local black flies, in 2023 we collected black fly larvae prior to the release of water into the Rio Grande River channel. METHODS: We randomly sub-sampled adult black flies collected along the Rio Grande during and after the 2020 VSV outbreak. We also collected black fly adults along the river in 2021 and 2022 and at southern NM farms and irrigation canals in 2022. Black fly larvae were collected from dams in the area in 2023. All collections were counted, and individual specimens were subjected to molecular barcoding for species identification. RESULTS: DNA barcoding of adult black flies detected four species in 2020: Simulium meridionale (N = 158), S. mediovittatum (N = 83), S. robynae (N = 26) and S. griseum/notatum (N = 1). Simulium robynae was only detected during the VSV outbreak period, S. meridionale showed higher relative abundance, but lower absolute abundance, during the outbreak than post-outbreak period, and S. mediovittatum was rare during the outbreak period but predominated later in the summer. In 2022, relative abundance of black fly species did not differ significantly between the Rio Grande sites and farm and irrigation canals. Intriguingly, 63 larval black flies comprised 56% Simulium vittatum, 43% S. argus and 1% S. encisoi species that were either extremely rare or not detected in previous adult collections. CONCLUSIONS: Our results suggest that S. robynae and S. meridionale could be shaping patterns of VSV transmission in southern NM. Thus, field studies of the source of these species as well as vector competence studies are warranted.


Assuntos
Simuliidae , Estomatite Vesicular , Animais , Estomatite Vesicular/epidemiologia , New Mexico/epidemiologia , Insetos Vetores , Vesiculovirus , Larva , Surtos de Doenças
19.
Viruses ; 16(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400054

RESUMO

Orthohantaviruses may cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Andes virus (ANDV) is the only orthohantavirus associated with human-human transmission. Therefore, emergency vaccination would be a valuable public health measure to combat ANDV-derived infection clusters. Here, we utilized a promising vesicular stomatitis virus (VSV)-based vaccine to advance the approach for emergency applications. We compared monovalent and bivalent VSV vectors containing the Ebola virus (EBOV), glycoprotein (GP), and ANDV glycoprotein precursor (GPC) for protective efficacy in pre-, peri- and post-exposure immunization by the intraperitoneal and intranasal routes. Inclusion of the EBOV GP was based on its favorable immune cell targeting and the strong innate responses elicited by the VSV-EBOV vaccine. Our data indicates no difference of ANDV GPC expressing VSV vectors in pre-exposure immunization independent of route, but a potential benefit of the bivalent VSVs following peri- and post-exposure intraperitoneal vaccination.


Assuntos
Vacinas contra Ebola , Ebolavirus , Orthohantavírus , Cricetinae , Animais , Humanos , Vesiculovirus/genética , Vírus da Estomatite Vesicular Indiana/genética , Ebolavirus/genética , Glicoproteínas , Anticorpos Antivirais
20.
mBio ; 15(3): e0237323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38334805

RESUMO

Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.


Assuntos
Aborto Espontâneo , Vacinas , Estomatite Vesicular , Humanos , Feminino , Gravidez , Animais , Camundongos , Vírus da Rubéola/metabolismo , Mutação Puntual , Glicoproteínas/genética , Proteínas do Envelope Viral/genética , Vesiculovirus/genética , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...