Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Sci Rep ; 14(1): 13670, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871968

RESUMO

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio , Células-Tronco Neoplásicas , Fosfoenolpiruvato Carboxiquinase (GTP) , Espécies Reativas de Oxigênio , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Glicogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicogenólise , Via de Pentose Fosfato/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Biomed Pharmacother ; 176: 116935, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876050

RESUMO

Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.


Assuntos
Neoplasias da Mama , Progressão da Doença , Glucosefosfato Desidrogenase , Via de Pentose Fosfato , Transcetolase , Transcetolase/metabolismo , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Animais
3.
Phytomedicine ; 129: 155657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692076

RESUMO

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Assuntos
Neoplasias Pulmonares , Via de Pentose Fosfato , Xantonas , Xantonas/farmacologia , Animais , Via de Pentose Fosfato/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Humanos , Fosfogluconato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças
4.
ACS Infect Dis ; 10(6): 1896-1903, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38735064

RESUMO

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.


Assuntos
Antibacterianos , Escherichia coli , Glucose , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Frutosedifosfatos/metabolismo
5.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38801802

RESUMO

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Assuntos
Proliferação de Células , Glutamina , Ácido Oleico , Neoplasias Ovarianas , Via de Pentose Fosfato , Glutamina/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Feminino , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Glucose/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673877

RESUMO

Monosomy 3 in uveal melanoma (UM) increases the risk of lethal metastases, mainly in the liver, which serves as the major site for the storage of excessive glucose and the metabolization of the dietary flavonoid quercetin. Although primary UMs with monosomy 3 exhibit a higher potential for basal glucose uptake, it remains unknown as to whether glycolytic capacity is altered in such tumors. Herein, we initially analyzed the expression of n = 151 genes involved in glycolysis and its interconnected branch, the "pentose phosphate pathway (PPP)", in the UM cohort of The Cancer Genome Atlas Study and validated the differentially expressed genes in two independent cohorts. We also evaluated the effects of quercetin on the growth, survival, and glucose metabolism of the UM cell line 92.1. The rate-limiting glycolytic enzyme PFKP was overexpressed whereas the ZBTB20 gene (locus: 3q13.31) was downregulated in the patients with metastases in all cohorts. Quercetin was able to impair proliferation, viability, glucose uptake, glycolysis, ATP synthesis, and PPP rate-limiting enzyme activity while increasing oxidative stress. UMs with monosomy 3 display a stronger potential to utilize glucose for the generation of energy and biomass. Quercetin can prevent the growth of UM cells by interfering with glucose metabolism.


Assuntos
Proliferação de Células , Glucose , Glicólise , Melanoma , Quercetina , Neoplasias Uveais , Quercetina/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Melanoma/tratamento farmacológico , Humanos , Neoplasias Uveais/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/tratamento farmacológico , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Cromossomos Humanos Par 3/genética
7.
BMC Anesthesiol ; 22(1): 34, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086470

RESUMO

BACKGROUND: Agitation is common in subarachnoid hemorrhage (SAH), and sedation with midazolam, propofol and dexmedetomidine is essential in agitation management. Previous research shows the tendency of dexmedetomidine and propofol in improving long-term outcome of SAH patients, whereas midazolam might be detrimental. Brain metabolism derangement after SAH might be interfered by sedatives. However, how sedatives work and whether the drugs interfere with patient outcome by altering cerebral metabolism is unclear, and the comprehensive view of how sedatives regulate brain metabolism remains to be elucidated. METHODS: For cerebrospinal fluid (CSF) and extracellular space of the brain exchange instantly, we performed a cohort study, applying CSF of SAH patients utilizing different sedatives or no sedation to metabolomics. Baseline CSF metabolome was corrected by selecting patients of the same SAH and agitation severity. CSF components were analyzed to identify the most affected metabolic pathways and sensitive biomarkers of each sedative. Markers might represent the outcome of the patients were also investigated. RESULTS: Pentose phosphate pathway was the most significantly interfered (upregulated) pathway in midazolam (p = 0.0000107, impact = 0.35348) and propofol (p = 0.00000000000746, impact = 0.41604) groups. On the contrary, dexmedetomidine decreased levels of sedoheptulose 7-phosphate (p = 0.002) and NADP (p = 0.024), and NADP is the key metabolite and regulator in pentose phosphate pathway. Midazolam additionally augmented purine synthesis (p = 0.00175, impact = 0.13481) and propofol enhanced pyrimidine synthesis (p = 0.000203, impact = 0.20046), whereas dexmedetomidine weakened pyrimidine synthesis (p = 0.000000000594, impact = 0.24922). Reduced guanosine diphosphate (AUC of ROC 0.857, 95%CI 0.617-1, p = 0.00506) was the significant CSF biomarker for midazolam, and uridine diphosphate glucose (AUC of ROC 0.877, 95%CI 0.631-1, p = 0.00980) for propofol, and succinyl-CoA (AUC of ROC 0.923, 95%CI 0.785-1, p = 0.000810) plus adenosine triphosphate (AUC of ROC 0.908, 95%CI 0.6921, p = 0.00315) for dexmedetomidine. Down-regulated CSF succinyl-CoA was also associated with favorable outcome (AUC of ROC 0.708, 95% CI: 0.524-0.865, p = 0.029333). CONCLUSION: Pentose phosphate pathway was a crucial target for sedatives which alter brain metabolism. Midazolam and propofol enhanced the pentose phosphate pathway and nucleotide synthesis in poor-grade SAH patients, as presented in the CSF. The situation of dexmedetomidine was the opposite. The divergent modulation of cerebral metabolism might further explain sedative pharmacology and how sedatives affect the outcome of SAH patients.


Assuntos
Dexmedetomidina/farmacologia , Midazolam/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Propofol/farmacologia , Agitação Psicomotora/prevenção & controle , Hemorragia Subaracnóidea/complicações , Idoso , Estudos de Coortes , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Pessoa de Meia-Idade , Agitação Psicomotora/etiologia
8.
Front Endocrinol (Lausanne) ; 12: 791174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867831

RESUMO

Estrogen therapy is widely used as a supplementary treatment after hysteroscopy for female infertility patients owing to its protective function that improves endometrial regeneration and menstruation, inhibits recurrent adhesions, and improves subsequent conception rate. The endometrial protective function of such estrogen administration pre-surgery is still controversial. In the current study, 12 infertility patients were enrolled, who were treated with estrogen before hysteroscopy surgery. Using cutting-edge metabolomic analysis, we observed alterations in the pentose phosphate pathway (PPP) intermediates of the patient's endometrial tissues. Furthermore, using Ishikawa endometrial cells, we validated our clinical discovery and identified estrogen-ESR-G6PD-PPP axial function, which promotes estrogen-induced cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Metabolômica/métodos , Via de Pentose Fosfato/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/fisiologia , Endométrio/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Infertilidade Feminina/metabolismo , Via de Pentose Fosfato/fisiologia
9.
Biomolecules ; 11(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34944532

RESUMO

It has been considered that proline dehydrogenase/proline oxidase (PRODH/POX) is involved in antineoplastic activity of metformin (MET). The aim of this study is identification of key metabolites of glycolysis, pentose phosphate pathway (PPP), tricarboxylic acids (TCA), urea cycles (UC) and some amino acids in MET-treated MCF-7 cells and PRODH/POX-knocked out MCF-7 (MCF-7crPOX) cells. MCF-7crPOX cells were generated by using CRISPR-Cas9. Targeted metabolomics was performed by LC-MS/MS/QqQ. Expression of pro-apoptotic proteins was evaluated by Western blot. In the absence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to similar inhibition of glycolysis (drastic increase in intracellular glucose and pyruvate) and increase in the utilization of phospho-enol-pyruvic acid, glucose-6-phosphate and some metabolites of TCA and UC, contributing to apoptosis. However, in the presence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to utilization of some studied metabolites (except glucose), facilitating pro-survival phenotype of MCF-7 cells in these conditions. It suggests that MET treatment or PRODH/POX-knock out induce similar metabolic effects (glucose starvation) and glycolysis is tightly linked to glutamine metabolism in MCF-7 breast cancer cells. The data provide insight into mechanism of anticancer activity of MET as an approach to further studies on experimental breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Glutamina/metabolismo , Metabolômica/métodos , Metformina/farmacologia , Prolina Oxidase/genética , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cromatografia Líquida , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Glicólise/efeitos dos fármacos , Humanos , Células MCF-7 , Via de Pentose Fosfato/efeitos dos fármacos , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo , Ureia/metabolismo
10.
J Exp Clin Cancer Res ; 40(1): 308, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593007

RESUMO

BACKGROUND: Kinases play critical role in clear-cell renal cell carcinoma (ccRCC). We aim to exploit novel kinase that is both protumorigenic and drugable in ccRCC. METHODS: Reproduction of public datasets with validation using microarray was performed to identify candidate gene. Functionality was studied using multi-omics with validation in vitro and in vivo. RESULTS: 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) was differentially expressed showing significantly higher expression in tumor than in normal kidney. PFKFB4 overexpression was associated with advanced tumor grade, stage and worsened prognosis. PFKFB4-knockdown significantly impaired fitness in cell proliferation, migration and wound healing. Despite being recurrently deleted on 3p, PFKFN4 mRNA remained actively transcribed by HIF1α. Metabolomics showed overexpressed PFKFB4 showed enriched metabolites in pentose phosphate pathway (PPP). Phosphoproteomics and immunoprecipitation showed PFKFB4 also phosphorylated NCOA3 which interacted with FBP1 to counteract overactive PPP flux, forming a regulatory loop. PFKFB4-knockdown overcame resistance to Sunitinib in vitro and in vivo both in xenograft and tail-vein injection murine models. CONCLUSION: We concluded PFKFB4 was associated with PPP activity and the fine-tuning of which was mediated by its phosphorylation of NCOA3. Targeting PFKFB4 held promise to combat resistance to Sunitinib.


Assuntos
Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Metaboloma/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fosfofrutoquinase-2/metabolismo , Sunitinibe/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Fosfofrutoquinase-2/genética , Fosforilação , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cancer Sci ; 112(12): 4944-4956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533861

RESUMO

Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway. Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and the TCA cycle, therefore suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.


Assuntos
Leucemia/tratamento farmacológico , Manose-6-Fosfato Isomerase/metabolismo , Manose/administração & dosagem , Regulação para Cima , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Células K562 , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Manose/farmacologia , Manose-6-Fosfato Isomerase/antagonistas & inibidores , Camundongos , Via de Pentose Fosfato/efeitos dos fármacos , Prognóstico , Células THP-1 , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Rep ; 11(1): 18173, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518559

RESUMO

Itaconic acid is produced by immune responsive gene 1 (IRG1)-coded enzyme in activated macrophages and known to play an important role in metabolism and immunity. In this study, mechanism of itaconic acid functioning as an anti-inflammatory metabolite was investigated with molecular biology and immunology techniques, by employing IRG1-null (prepared with CRISPR) and wild-type macrophages. Experimental results showed that itaconic acid significantly promoted the pentose phosphate pathway (PPP), which subsequently led to significantly higher NADPH oxidase activity and more reactive oxygen species (ROS) production. ROS production increased the expression of anti-inflammatory gene A20, which in turn decreased the production of inflammatory cytokines IL-6, IL-1ß and TNF-α. NF-κB, which can up-regulate A20, was also vital in controlling IRG1 and itaconic acid involved immune-modulatory responses in LPS-stimulated macrophage in this study. In addition, itaconic acid inhibited the growth of Salmonella typhimurium in cell through increasing ROS production from NADPH oxidase and the hatching of Schistosoma japonicum eggs in vitro. In short, this study revealed an alternative mechanism by which itaconic acid acts as an anti-inflammatory metabolite and confirmed the inhibition of bacterial pathogens with itaconic acid via ROS in cell. These findings provide the basic knowledge for future biological applications of itaconic acid in anti-inflammation and related pathogens control.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Succinatos/farmacologia , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Óvulo/efeitos dos fármacos , Células RAW 264.7 , Salmonella typhimurium/crescimento & desenvolvimento , Schistosoma japonicum/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
J Ethnopharmacol ; 281: 114479, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34343647

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhubarb is a natural herbal medicine widely used clinically with numerous pharmacological activities including anti-cancer. Specifically, several studies reported that free anthraquinones from Rhubarb suppressed the proliferation of hepatoma cells. Nonetheless, recent studies revealed that Rhubarb caused hepatotoxicity in vivo, confirming its "two-way" effect on the liver. Therefore, the efficacy and safety of Rhubarb in the in vivo treatment of liver cancer should be further elucidated. AIM OF THE STUDY: This study investigated the presence of hepatoprotection or hepatotoxicity of Rhubarb in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. MATERIAL AND METHODS: A total of 112 male Sprague-Dawley rats weighing 190-250 g were enrolled. The rats were induced hepatocarcinogenesis using diethylnitrosamine (0.002 g/rat) until 17 weeks. Starting at week 11, Rhubarb granules (4 g/kg and 8 g/kg) were intragastrically administered daily for 7 weeks. All rats were euthanized at week 20 and the livers were analyzed via non-targeted metabolomics analysis. We established hepatic glucose 6 phosphate (6PG) levels and glucose 6 phosphate dehydrogenase (G6PD) activities to assess the pentose phosphate pathway (PPP). And the liver injuries of rats were analyzed via histological changes, hepatic function, as well as hepatic protein levels of alpha-fetoprotein (AFP), pyruvate kinase isozyme type M2 (PKM2), and proliferating cell nuclear antigen (PCNA). Furthermore, polydatin (0.1 g/kg/d) as a specific inhibitor of G6PD was used to treat rats. Notably, their histological changes, hepatic function, hepatic 6PG levels, hepatic G6PD activities, PCNA levels, and PKM2 levels were recorded. RESULTS: Non-targeted metabolomics revealed that Rhubarb regulated the PPP in the liver of Rhubarb-DEN-treated rats. Besides, Rhubarb activated the oxidative branch of the PPP by activating G6PD (a rate-limiting enzyme in the oxidative PPP) in the liver of Rhubarb-DEN-treated rats. Meanwhile, Rhubarb promoted DEN-induced hepatocarcinogenesis. Moreover, polydatin attenuated the promoting effect of Rhubarb on DEN-induced hepatocarcinogenesis. CONCLUSIONS: Rhubarb promoted DEN-induced hepatocarcinogenesis by activating the PPP, indicating that the efficacy and safety of Rhubarb in the treatment of liver cancer deserve to be deliberated.


Assuntos
Dietilnitrosamina/toxicidade , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Via de Pentose Fosfato/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rheum/química , Animais , Biomarcadores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/genética , Glutationa/metabolismo , Masculino , Estresse Oxidativo , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
14.
EMBO J ; 40(15): e106800, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156108

RESUMO

How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.


Assuntos
Arabidopsis/efeitos dos fármacos , Dipeptídeos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Nicotiana/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Dipeptídeos/química , Dipeptídeos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Plântula/efeitos dos fármacos , Plântula/metabolismo , Nicotiana/metabolismo
15.
Microb Cell Fact ; 20(1): 82, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827585

RESUMO

BACKGROUND: Trehalose, an intracellular protective agent reported to mediate defense against many stresses, can alleviate high-temperature-induced damage in Pleurotus ostreatus. In this study, the mechanism by which trehalose relieves heat stress was explored by the addition of exogenous trehalose and the use of trehalose-6-phosphate synthase 1 (tps1) overexpression transformants. RESULTS: The results suggested that treatment with exogenous trehalose or overexpression of tps1 alleviated the accumulation of lactic acid under heat stress and downregulated the expression of the phosphofructokinase (pfk) and pyruvate kinase (pk) genes, suggesting an ameliorative effect of trehalose on the enhanced glycolysis in P. ostreatus under heat stress. However, the upregulation of hexokinase (hk) gene expression by trehalose indicated the involvement of the pentose phosphate pathway (PPP) in heat stress resistance. Moreover, treatment with exogenous trehalose or overexpression of tps1 increased the gene expression level and enzymatic activity of glucose-6-phosphate dehydrogenase (g6pdh) and increased the production of both the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), confirming the effect of trehalose on alleviating oxidative damage by enhancing PPP in P. ostreatus under heat stress. Furthermore, treatment with exogenous trehalose or overexpression of tps1 ameliorated the decrease in the oxygen consumption rate (OCR) caused by heat stress, suggesting a relationship between trehalose and mitochondrial function under heat stress. CONCLUSIONS: Trehalose alleviates high-temperature stress in P. ostreatus by inhibiting glycolysis and stimulating PPP activity. This study may provide further insights into the heat stress defense mechanism of trehalose in edible fungi from the perspective of intracellular metabolism.


Assuntos
Glucosiltransferases/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Pleurotus/metabolismo , Trealose/farmacologia , Proteínas Fúngicas/metabolismo , Glicólise/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos
16.
Cell Rep ; 34(10): 108831, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691103

RESUMO

Although T cell expansion depends on glycolysis, T effector cell differentiation requires signaling via the production of reactive oxygen species (ROS). Because the pentose phosphate pathway (PPP) regulates ROS by generating nicotinamide adenine dinucleotide phosphate (NADPH), we examined how PPP blockade affects T cell differentiation and function. Here, we show that genetic ablation or pharmacologic inhibition of the PPP enzyme 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP results in the generation of superior CD8+ T effector cells. These cells have gene signatures and immunogenic markers of effector phenotype and show potent anti-tumor functions both in vitro and in vivo. In these cells, metabolic reprogramming occurs along with increased mitochondrial ROS and activated antioxidation machinery to balance ROS production against oxidative damage. Our findings reveal a role of 6PGD as a checkpoint for T cell effector differentiation/survival and evidence for 6PGD as an attractive metabolic target to improve tumor immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fosfogluconato Desidrogenase/metabolismo , 6-Aminonicotinamida/química , 6-Aminonicotinamida/farmacologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Granzimas/genética , Granzimas/metabolismo , Humanos , Imunoterapia , Listeria monocytogenes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/fisiologia , Fosfogluconato Desidrogenase/antagonistas & inibidores , Fosfogluconato Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transplante Heterólogo
17.
Int J Food Microbiol ; 341: 109074, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508583

RESUMO

Campylobacter jejuni (C. jejuni) is one of the most common foodborne pathogens that cause human sickness mostly through the poultry food chain. Cinnamon essential oil (CEO) has excellent antibacterial ability against C. jejuni growth. This study investigated the antibacterial mechanism of CEO against C. jejuni primarily through metabolism, energy metabolism of essential enzymes (AKPase, ß-galactosidase, and ATPase), and respiration metabolism. Results showed that the hexose monophosphate pathway (HMP) was inhibited, and that the enzyme activity of G6DPH substantially decreased upon treatment with CEO. Analysis of the effect of CEO on the expression of toxic genes was performed by the real-time PCR (RT-PCR). The expression levels of the toxic genes cadF, ciaB, fliA, and racR under CEO treatment were determined. Casein/CEO nanospheres were further prepared for the effective inhibition of C. jejuni and characterized by particle-size distribution, zeta-potential distribution, fluorescence, TEM, and GC-MS methods. Finally, the efficiency of CEO and casein/CEO nanospheres in terms of antibacterial activity against C. jejuni was verified. The casein/CEO nanospheres displayed high antibacterial activity on duck samples. The population of the test group decreased from 4.30 logCFU/g to 0.86 logCFU/g and 4.30 logCFU/g to 2.46 logCFU/g at 4 °C and at 25 °C for C. jejuni, respectively. Sensory evaluation and texture analysis were also conducted on various duck samples.


Assuntos
Antibacterianos/farmacologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/efeitos dos fármacos , Caseínas/farmacologia , Cinnamomum zeylanicum/química , Óleos Voláteis/farmacologia , Animais , Infecções por Campylobacter/tratamento farmacológico , Galinhas/microbiologia , Preparações de Ação Retardada/farmacologia , Patos/microbiologia , Metabolismo Energético/efeitos dos fármacos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/antagonistas & inibidores , Humanos , Nanosferas , Via de Pentose Fosfato/efeitos dos fármacos , Aves Domésticas/microbiologia
18.
Mitochondrion ; 57: 192-204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484870

RESUMO

Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Metabolômica/métodos , Mitocôndrias/metabolismo , Compostos de Rutênio/administração & dosagem , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/psicologia , Cromatografia Líquida , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Masculino , Espectrometria de Massas , Via de Pentose Fosfato/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Compostos de Rutênio/farmacologia
19.
Biochimie ; 181: 154-161, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33347925

RESUMO

High salt diet (HSD, 8% NaCl) contributes to salt-sensitive hypertension, this study aimed to determine the effect of HSD on salt-sensitive hypertension by combining proteomic with metabolomics methods. Salt-sensitive rats were fed on HSD and normal salt diet (NSD, 0.4% NaCl) for two weeks before further analysis. Proteomic analysis showed the differential expression proteins (DEPs) were primarily mapped in the tricarboxylic acid (TCA)-cycle, glycolysis/gluconeogenesis, and other pathways associated with multiple amino acids. HSD decreased the medullary activities and protein expression level of two key enzymes of TCA-cycle, MDH and NADP+-IDH. Metabolomics showed three serous TCA-cycle-associated compounds, including decreased malic acid, decreased citric acid, and increased fumaric acid were differentially detected, which resulted in a decrease in NO content and an increase in H2O2 content in serum. The content of GSH, GSH/GSSG ratio, and synthesis substrates of GSH-cysteine and glycine, were significantly decreased by HSD, thus attenuated the antioxidant system in the renal medulla. HSD enhanced the medullary pentose phosphate pathway, which finally increased the concentration of NADPH and NADP+, NADPH/NADP+, and the activity of NADPH oxidase in the renal medulla. Additionally, HSD enhanced the glycolysis pathway in the renal medulla. In summary, HSD significantly weakened the TCA cycle, and attenuated the antioxidant system in the renal medulla, which finally contributed to salt-sensitive hypertension.


Assuntos
Antioxidantes/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Hipertensão , Medula Renal/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Medula Renal/patologia , Masculino , Via de Pentose Fosfato/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/farmacologia
20.
Mol Cell Biol ; 41(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33139492

RESUMO

Activating mutations in the KEAP1-NRF2 pathway are found in approximately 25% of lung tumors, where the hijacking of NRF2's cytoprotective functions results in aggressive tumor growth, chemoresistance, and a poor prognosis for patients. There are currently no approved drugs which target aberrant NRF2 activation, which means that there is an urgent clinical need to target this orphan oncogenic pathway in human tumors. In this study, we used an isogenic pair of wild-type and Keap1 knockout cells to screen a range of chemotherapeutic and pathway-targeted anticancer drugs in order to identify compounds which display enhanced toxicity toward cells with high levels of Nrf2 activity. Through this approach, complemented by validation across a panel of eight human cancer cell lines from a range of different tissues, we identified the DNA-damaging agent mitomycin C to be significantly more toxic in cells with aberrant Nrf2 activation. Mechanistically, we found that the NRF2 target genes for cytochrome P450 reductase, NQO1, and enzymes in the pentose phosphate pathway are all responsible for the NRF2-dependent enhanced bioactivation of mitomycin C. As mitomycin C is already approved for clinical use, it represents as excellent drug repositioning candidate to target the currently untreatable NRF2 activation in human tumors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mitomicina/farmacologia , NADP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/deficiência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Paclitaxel/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/genética , Transdução de Sinais , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...