Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(8): 220, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867024

RESUMO

The bean yellow mosaic virus (BYMV) is one of the most serious economic diseases affecting faba bean crop production. Rhizobium spp., well known for its high nitrogen fixation capacity in legumes, has received little study as a possible biocontrol agent and antiviral. Under greenhouse conditions, foliar application of molecularly characterized Rhizobium leguminosarum bv. viciae strain 33504-Borg201 to the faba bean leaves 24 h before they were infected with BYMV made them much more resistant to the disease while also lowering its severity and accumulation. Furthermore, the treatment promoted plant growth and health, as evidenced by the increased total chlorophyll (32.75 mg/g f.wt.) and protein content (14.39 mg/g f.wt.), as well as the improved fresh and dry weights of the plants. The protective effects of 33504-Borg201 greatly lowered the levels of hydrogen peroxide (H2O2) (4.92 µmol/g f.wt.) and malondialdehyde (MDA) (173.72 µmol/g f.wt.). The antioxidant enzymes peroxidase (1.58 µM/g f.wt.) and polyphenol oxidase (0.57 µM/g f.wt.) inhibited the development of BYMV in plants treated with 33504-Borg201. Gene expression analysis showed that faba bean plants treated with 33504-Borg201 had higher amounts of pathogenesis-related protein-1 (PR-1) (3.28-fold) and hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (4.13-fold) than control plants. These findings demonstrate the potential of 33,504-Borg201 as a cost-effective and eco-friendly method to protect faba bean plants against BYMV. Implementing this approach could help develop a simple and sustainable strategy for protecting faba bean crops from the devastating effects of BYMV.


Assuntos
Doenças das Plantas , Folhas de Planta , Rhizobium leguminosarum , Vicia faba , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento , Rhizobium leguminosarum/fisiologia , Vicia faba/virologia , Vicia faba/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Resistência à Doença , Peróxido de Hidrogênio/metabolismo
2.
Microbiol Spectr ; 12(5): e0028724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517168

RESUMO

Multipartite viruses exhibit a fragmented genome composed of several nucleic acid segments individually packaged in distinct viral particles. The genome of all species of the genus Nanovirus holds eight segments, which accumulate at a very specific and reproducible relative frequency in the host plant tissues. In a given host species, the steady state pattern of the segments' relative frequencies is designated the genome formula and is thought to have an adaptive function through the modulation of gene expression. Nanoviruses are aphid-transmitted circulative non-propagative viruses, meaning that the virus particles are internalized into the midgut cells, transferred to the hemolymph, and then to the saliva, with no replication during this transit. Unexpectedly, a previous study on the faba bean necrotic stunt virus revealed that the genome formula changes after ingestion by aphids. We investigate here the possible mechanism inducing this change by first comparing the relative segment frequencies in different compartments of the aphid. We show that changes occur both in the midgut lumen and in the secreted saliva but not in the gut, salivary gland, or hemolymph. We further establish that the viral particles differentially resist physicochemical variations, in particular pH, ionic strength, and/or type of salt, depending on the encapsidated segment. We thus propose that the replication-independent genome formula changes within aphids are not adaptive, contrary to changes occurring in plants, and most likely reflect a fortuitous differential degradation of virus particles containing distinct segments when passing into extra-cellular media such as gastric fluid or saliva. IMPORTANCE: The genome of multipartite viruses is composed of several segments individually packaged into distinct viral particles. Each segment accumulates at a specific frequency that depends on the host plant species and regulates gene expression. Intriguingly, the relative frequencies of the genome segments also change when the octopartite faba bean necrotic stunt virus (FBNSV) is ingested by aphid vectors, despite the present view that this virus travels through the aphid gut and salivary glands without replicating. By monitoring the genomic composition of FBNSV populations during the transit in aphids, we demonstrate here that the changes take place extracellularly in the gut lumen and in the saliva. We further show that physicochemical factors induce differential degradation of viral particles depending on the encapsidated segment. We propose that the replication-independent changes within the insect vector are not adaptive and result from the differential stability of virus particles containing distinct segments according to environmental parameters.


Assuntos
Afídeos , Genoma Viral , Insetos Vetores , Nanovirus , Replicação Viral , Afídeos/virologia , Animais , Genoma Viral/genética , Nanovirus/genética , Nanovirus/fisiologia , Insetos Vetores/virologia , Saliva/virologia , Doenças das Plantas/virologia , Vírion/genética , Vicia faba/virologia , Hemolinfa/virologia
3.
Proc Natl Acad Sci U S A ; 119(32): e2201453119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914138

RESUMO

Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.


Assuntos
Afídeos , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Insetos Vetores , Nanovirus , Vicia faba , Animais , Afídeos/virologia , Genoma Viral/genética , Insetos Vetores/virologia , Nanovirus/genética , Doenças das Plantas/virologia , Transporte Proteico , Transporte de RNA , RNA Viral/genética , RNA Viral/metabolismo , Vicia faba/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Virol ; 96(3): e0138821, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818072

RESUMO

Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (here named SCSA 1) on various important traits of Faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation, and viral transmission. The results indicate that SCSA 1 does not affect the severity of symptoms nor overall FBNYV accumulation in V. faba, but it does change the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to the simple increase of viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. IMPORTANCE Alphasatellites are circular single-stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruses, the two ssDNA plant-infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here, we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, Faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both the plant and the vector. We also confirm that although within-plant virus load and symptoms are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load but significantly increases virus transmission rate, and thus it may confer a possible evolutionary advantage for the helper virus.


Assuntos
DNA Viral , Genoma Viral , Genômica , Nanovirus/fisiologia , Doenças das Plantas/virologia , Replicação Viral , Genômica/métodos , Estágios do Ciclo de Vida , Vírus de Plantas/fisiologia , Vicia faba/virologia , Carga Viral
5.
Mol Plant Pathol ; 21(11): 1421-1435, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32936537

RESUMO

Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).


Assuntos
Fabavirus/patogenicidade , Especificidade de Hospedeiro/genética , Doenças das Plantas/virologia , Interferência de RNA , Vicia faba/virologia , Proteínas Virais/metabolismo , Capsicum/virologia , Fabavirus/genética , Expressão Gênica , Solanum lycopersicum/virologia , RNA Viral/genética , Nicotiana/virologia , Proteínas Virais/genética , Virulência
6.
Int J Biol Macromol ; 163: 1261-1275, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659403

RESUMO

Bean yellow mosaic virus (BYMV) is the main cause of the mosaic and malformation of many plants, worldwide. Thus, the triggering of plant systemic resistance against BYMV is of great interest. In this endeavor, we aimed to explore the capacity of new carboxymethyl chitosan-titania nanobiocomposites (NBCs, NBC1,2) to trigger faba bean plants resistance against BYMV. Effects of NBCs on faba bean (Vicia faba L.) disease severity (DS), growth parameters, and antioxidant defense system activity were investigated under BYMV stress. Noticeably that the DS in NBCs-treated faba bean was significantly reduced compared to untreated plants. Moreover, treatment with NBCs was remarkably increased growth indices, photosynthetic pigments, membrane stability index, and relative water content compared to challenge control. Additionally, enzymatic and non-enzymatic antioxidants and total soluble protein were significantly increased. Contrary, electrolyte leakage, hydrogen peroxide, and lipid peroxidation were reduced. Interestingly that NBC1 has higher efficacy than NBC2 in triggering plant immune-system against BYMV as indicated from DS percentage (DS = 10.66% and 19.33% in case of plants treated with NBC1 and NBC2, respectively). This could be attributed to the higher content of TNPs in NBC1 (21.58%) as compared to NBC2 (14.32%). Overall, NBCs offer safe and economic antiviral agents against BYMV.


Assuntos
Quitosana/análogos & derivados , Nanocompostos/química , Doenças das Plantas/virologia , Potyvirus/fisiologia , Titânio/química , Vicia faba/química , Vicia faba/virologia , Antioxidantes/metabolismo , Carotenoides/química , Quitosana/química , Clorofila/química , Clorofila/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
7.
Virol J ; 16(1): 89, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277670

RESUMO

A tenuivirus, referred to here as JKI 29327, was isolated from a black medic (Medicago lupulina) plant collected in Austria. The virus was mechanically transmitted to Nicotiana benthamiana, M. lupulina, M. sativa, Pisum sativum and Vicia faba. The complete genome was determined by high throughput sequencing. The genome of JKI 29327 consists of eight RNA segments closely related to those of melon chlorotic spot virus (MeCSV) isolate E11-018 from France. Since segments RNA 7 and 8 of JKI 29327 are shorter, its genome is slightly smaller (by 247 nts) than that of E11-018. Pairwise comparisons between the predicted virus proteins of JKI 29327 and their homologues in E11-018 showed aa identities ranging from 80.6 to 97.2%. Plants infected with E11-081 gave intermediate DAS-ELISA reactions with polyclonal antibodies to JKI 29327. Since JKI 29327 and E11-018 appear to be closely related both serologically and genetically, we propose to regard JKI 29327 as the black medic strain of MeCSV. To our knowledge, JKI 29327 represents the second tenuivirus identified from a dicotyledonous plant. Serological and molecular diagnostic methods were developed for future detection.


Assuntos
Cucurbitaceae/virologia , Doenças das Plantas/virologia , Tenuivirus/genética , Tenuivirus/isolamento & purificação , Áustria , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Pisum sativum/virologia , Filogenia , RNA Viral/genética , Nicotiana/virologia , Vicia faba/virologia , Proteínas Virais/genética
8.
Arch Virol ; 164(7): 1915-1921, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993462

RESUMO

A new polerovirus species with the proposed name faba bean polerovirus 1 (FBPV-1) was found in winter legume crops and weeds in New South Wales, Australia. We describe the complete genome sequence of 5,631 nucleotides, containing all putative open reading frames, from two isolates, one from faba bean (Vicia faba) and one from chickpea (Cicer arietinum). FBPV-1 has a genome organization typical of poleroviruses with six open reading frames. However, recombination analysis strongly supports a recombination event in which the 5' portion of FBPV-1, which encodes for proteins P0, P1 and P1-P2, appears to be from a novel parent with a closest nucleotide identity of only 66% to chickpea chlorotic stunt virus. The 3' portion of FBPV-1 encodes for proteins P3, P4 and P3-P5 and shares 94% nucleotide identity to a turnip yellows virus isolate from Western Australia.


Assuntos
Cicer/virologia , Produtos Agrícolas/virologia , Luteoviridae/classificação , Luteoviridae/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Austrália , Genoma Viral/genética , Luteoviridae/isolamento & purificação , Fases de Leitura Aberta/genética , Filogenia , RNA Viral/genética , Proteínas Virais/genética
9.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30857590

RESUMO

A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.


Assuntos
DNA Viral/genética , Genoma Viral , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Vírion/genética , Vírus de DNA , Hibridização in Situ Fluorescente , Microscopia Confocal , Nanovirus/fisiologia , Análise de Regressão , Replicação Viral
10.
Pest Manag Sci ; 75(3): 828-834, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30141238

RESUMO

BACKGROUND: This study fabricated titanium dioxide nanostructures (TDNS) to control broad bean stain virus (BBSV) in faba bean plants. Protection of faba bean against BBSV was evaluated biologically with respect to virus severity, reduction in BBSV accumulation and expression of a pathogenesis-related gene. RESULTS: The results indicate that faba bean plants treated with TDNS show a significant reduction in disease severity relative to untreated plants. The regulatory and defense gene involved in the salicylic acid signaling pathway was highly expressed in faba bean plants treated with TDNS compared with untreated plants. The structural features of TDNS, such as the small particle size and suitable shape, contributed to its high efficacy against BBSV. Growth of faba bean plants treated with TDNS was significantly enhanced relative to untreated plants. CONCULSION: TDNS is an important, eco-friendly and safe strategy for controlling BBSV in faba bean and this study is the first report of this control strategy. © 2018 Society of Chemical Industry.


Assuntos
Antivirais/farmacologia , Comovirus/efeitos dos fármacos , Nanoestruturas , Doenças das Plantas/virologia , Titânio/farmacologia , Vicia faba/virologia , Tamanho da Partícula , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Vicia faba/genética
11.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720515

RESUMO

Multipartite viruses package their genomic segments independently and thus incur the risk of being unable to transmit their entire genome during host-to-host transmission if they undergo severe bottlenecks. In this paper, we estimated the bottleneck size during one infection cycle of Faba bean necrotic stunt virus (FBNSV), an octopartite nanovirus whose segments have been previously shown to converge to particular and unequal relative frequencies within host plants and aphid vectors. Two methods were used to derive this estimate, one based on the probability of transmission of the virus and the other based on the temporal evolution of the relative frequency of markers for two genomic segments, one frequent and one rare (segment N and S, respectively), both in plants and vectors. Our results show that FBNSV undergoes severe bottlenecks during aphid transmission. Further, even though the bottlenecks are always narrow under our experimental conditions, they slightly widen with the number of transmitting aphids. In particular, when several aphids are used for transmission, the bottleneck size of the segments is also affected by within-plant processes and, importantly, significantly differs across segments. These results indicate that genetic drift not only must be an important process affecting the evolution of these viruses but also that these effects vary across genomic segments and, thus, across viral genes, a rather unique and intriguing situation. We further discuss the potential consequences of our findings for the transmission of multipartite viruses.IMPORTANCE Multipartite viruses package their genomic segments in independent capsids. The most obvious cost of such genomic structure is the risk of losing at least one segment during host-to-host transmission. A theoretical study has shown that for nanoviruses, composed of 6 to 8 segments, hundreds of copies of each segment need to be transmitted to ensure that at least one copy of each segment was present in the host. These estimations seem to be very high compared to the size of the bottlenecks measured with other viruses. Here, we estimated the bottleneck size during one infection cycle of FBNSV, an octopartite nanovirus. We show that these bottlenecks are always narrow (few viral particles) and slightly widen with the number of transmitting aphids. These results contrast with theoretical predictions and illustrate the fact that a new conceptual framework is probably needed to understand the transmission of highly multipartite viruses.


Assuntos
Afídeos/virologia , Insetos Vetores , Nanovirus/patogenicidade , Doenças das Plantas/virologia , Vicia faba/virologia , Animais , DNA Viral/genética , Nanovirus/genética
12.
Arch Virol ; 163(3): 687-694, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29147784

RESUMO

Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.


Assuntos
DNA Viral/genética , Genoma Viral , Nanovirus/genética , Doenças das Plantas/virologia , Vírus Reordenados/genética , Vicia faba/virologia , Alphavirus/classificação , Alphavirus/genética , Alphavirus/isolamento & purificação , Sequência de Bases , Cicer/virologia , DNA de Cadeia Simples/genética , Oriente Médio , Nanovirus/classificação , Nanovirus/isolamento & purificação , Filogenia , Filogeografia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Homologia de Sequência do Ácido Nucleico , Tunísia
13.
Arch Virol ; 162(8): 2437-2440, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28386650

RESUMO

Cowpea and broad bean plants showing severe stunting and leaf rolling symptoms were observed in Hefei city, Anhui province, China, in 2014. Symptomatic plants from both species were shown to be infected with milk vetch dwarf virus (MDV) by PCR. The complete genomes of MDV isolates from cowpea and broad bean were sequenced. Each of them had eight genomic DNAs that differed between the two isolates by 10.7% in their overall nucleotide sequences. In addition, the MDV genomes from cowpea and broad bean were associated with two and three alphasatellite DNAs, respectively. This is the first report of MDV on cowpea in China and the first complete genome sequences of Chinese MDV isolates.


Assuntos
Genoma Viral , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Vigna/virologia , Astrágalo/virologia , China , DNA Satélite/genética , DNA Viral/genética , Nanovirus/isolamento & purificação , Nanovirus/patogenicidade , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
14.
Virus Res ; 217: 71-5, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26951858

RESUMO

Broad bean wilt virus 1 (BBWV-1), genus Fabavirus, has a genome composed of two single-stranded positive-sense RNAs of ∼5.8 (RNA1) and 3.4kb (RNA2). Full-length cDNA clones of both genomic RNAs (pBenR1 and pBenR2) from BBWV-1 isolate Ben were constructed under the control of the T7 promoter. In vitro derived capped transcripts were infectious in Nicotiana benthamiana, Chenopodium quinoa and Vicia faba plants. The biological activity of viral transcripts was not affected by extra bases at the 5'-terminus introduced during in vitro transcription. Virions derived from the infectious cDNA clones displayed similar viral infectivity and accumulation, as well as symptom induction as the wild-type BBWV-1 isolate.


Assuntos
DNA Complementar , DNA Viral , Fabavirus/patogenicidade , Fabavirus/genética , Doenças das Plantas/virologia , RNA Viral , Nicotiana/virologia , Vicia faba/virologia , Vírion/genética , Vírion/patogenicidade
15.
J Virol ; 89(19): 9719-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178991

RESUMO

UNLABELLED: Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE: A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.


Assuntos
Afídeos/virologia , Insetos Vetores/virologia , Modelos Biológicos , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Viroses/transmissão , Animais , Primers do DNA/genética , Nanovirus/fisiologia , Reação em Cadeia da Polimerase
16.
Plant Physiol Biochem ; 81: 26-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24661407

RESUMO

Extremes of environmental conditions, such as biotic stresses, strongly affect plant growth and development and may adversely affect photosynthetic process. Virus infection is especially problematic in crops, because unlike other diseases, its impact cannot be reduced by phytosanitary treatments. The vegetable crops (Solanum lycopеrsicum L, Cucurbita melo L., Cucumis sativus L., Piper longum L., Solánum melongéna L., Vicia faba L.) showing virus-like symptoms were collected from fields located in the main crop production provinces of Azerbaijan. Infection of the plants were confirmed by Enzyme-linked immunosorbent assay using commercial kits for the following viruses: Tomato yellow leaf curl virus, Tomato mosaic virus, Tomato chlorosis virus, Melon necrotic spot virus and Cucumber mosaic virus, Bean common mosaic virus and Bean yellow mosaic virus. Generation sites of superoxide and hydrogen peroxide radicals and activities of enzymes involved in the detoxification of reactive oxygen species (catalase, glutathione reductase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase) were examined in uninfected leaves and in leaves infected with viruses. High accumulation of superoxide and hydrogen peroxide radicals was visualized in infected leaves as a purple discoloration of nitro blue tetrazolium and 3,3'-diaminobenzidine tetrahydrochloride. It was found that the activities of APX and CAT significantly increased in all infected samples compared with non-infected ones. Dynamics of GR and Cu/Zn-SOD activities differed from those of CAT and APX, and slightly increased in stressed samples. Electrophoretic mobility profiling of APX, GPX and CAT isoenzymes was also studied.


Assuntos
Antioxidantes/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Vírus de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Verduras/citologia , Ascorbato Peroxidases/metabolismo , Azerbaijão , Catalase/metabolismo , Cucurbita/citologia , Cucurbita/metabolismo , Cucurbita/virologia , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Piper/citologia , Piper/metabolismo , Piper/virologia , Doenças das Plantas/virologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Solanum/citologia , Solanum/metabolismo , Solanum/virologia , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Verduras/metabolismo , Verduras/virologia , Vicia faba/citologia , Vicia faba/metabolismo , Vicia faba/virologia
17.
Nat Commun ; 4: 2248, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23912259

RESUMO

Multipartite viruses have a genome divided into several nucleic acid segments, each encapsidated separately. An evident cost for these viral systems, particularly if some segments are rare, is the difficulty of gathering one copy of each segment to ensure infection. Here, we investigate the segment frequency-related cost by monitoring the copy number of the eight single-gene segments composing the genome of a plant nanovirus. We show that some viral genes accumulate at low frequency, whereas others dominate. We further show that the relative frequency of viral genes impacts both viral accumulation and symptom expression, and changes specifically in different hosts. Earlier proposed benefits of viral genome segmentation do not depend on the segments' frequency and cannot explain our observations. We propose that the differential control of gene/segment copy number may represent an unforeseen benefit for multipartite viruses, which may compensate for the extra costs induced by the low-frequency segments.


Assuntos
Dosagem de Genes , Genes Virais/genética , Vírus de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Desenvolvimento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vicia faba/virologia
18.
Adv Virus Res ; 84: 367-402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22682174

RESUMO

In the Mediterranean region, pea, bean, and faba bean production is affected by around 17 major viruses. These viruses do not have the same ecology and consequently require a variety of different preventive measures to control them. Some of these viruses have a narrow host range, such as Faba bean necrotic yellows virus (FBNYV), and others, such as Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), a very wide host range. Such features are important when identifying sources of virus inoculum in a region, and the vectors can transmit viruses from natural reservoirs to the crop plants. Some of these viruses are seed borne and, consequently, can be disseminated long distances through infected seeds. Crop losses caused by these viruses are variable, depending on the sensitivity and susceptibility of the crop to infection. Host resistance genes have been identified for some of these viruses, but in others, such as FBNYV, no resistance genes in faba bean have been identified yet. Significant progress was made in developing precise methods for the identification of these viruses, and new virus problems are being identified every year. This chapter is not intended to be a review for pea, bean, and faba bean viruses, but rather focuses on the major viruses which affect these crops in the Mediterranean basin with focus on the progress made over the past two decades.


Assuntos
Phaseolus/virologia , Pisum sativum/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vicia faba/virologia , Região do Mediterrâneo
19.
J Virol Methods ; 177(2): 202-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21855578

RESUMO

Broad bean wilt virus 1 (BBWV-1) and BBWV-2 are the two most significant viruses in the genus Fabavirus, causing damage to many economically important agricultural crops worldwide. A quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) procedure using two TaqMan(®)MGB probes was developed for sensitive and specific detection and quantitation of BBWV-1 and BBWV-2. Primers and probes were designed from conserved sequence stretches to detect all isolates of each virus. Standard curves using RNA transcripts identical to both TaqMan(®)MGB probes enabled absolute quantitation, with a wide dynamic range and high sensitivity (10(3)-10(10) RNA molecules). RT-qPCR was assayed with genetically divergent BBWV-1 and BBWV-2 isolates from different plant hosts and countries, and was used to evaluate the temporal accumulation of BBWV-1 RNA in two plant hosts.


Assuntos
Chenopodium quinoa/virologia , Fabavirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vicia faba/virologia , Sequência de Bases , Sequência Conservada , Primers do DNA/genética , Fabavirus/classificação , Fabavirus/genética , Dados de Sequência Molecular , Sondas de Ácido Nucleico/genética , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Alinhamento de Sequência
20.
Virol J ; 8: 355, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21767375

RESUMO

Clover yellow vein virus (ClYVV) causes lethal systemic necrosis in legumes, including broad bean (Vicia faba) and pea (Pisum sativum). To identify host genes involved in necrotic symptom expression after ClYVV infection, we screened cDNA fragments in which expression was changed in advance of necrotic symptom expression in broad bean (V. faba cv. Wase) using the differential display technique and secondarily with Northern blot analysis. Expression changes were confirmed in 20 genes, and the six that exhibited the most change were analyzed further. These six genes included a gene that encodes a putative nitrate-induced NOI protein (VfNOI), and another was homologous to an Arabidopsis gene that encodes a glycine- and proline-rich protein GPRP (VfGPRP). We recently reported that necrotic symptom development in ClYVV-infected pea is associated with expression of salicylic acid (SA)-dependent pathogenesis-related (PR) proteins and requires SA-dependent host responses. Interestingly, VfNOI and VfGPRP expression was correlated with that of the putative SA-dependent PR proteins in ClYVV-infected broad bean. However, broad bean infected with a recombinant ClYVV expressing the VfGPRP protein showed weaker symptoms and less viral multiplication than that infected with ClYVV expressing the GFP protein. These results imply that VfGPRP plays a role in defense against ClYVV rather than in necrotic symptom expression.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Necrose/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Potyvirus/fisiologia , Vicia faba/genética , Sequência de Aminoácidos , Northern Blotting , Western Blotting , DNA Complementar/análise , DNA Complementar/biossíntese , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Dados de Sequência Molecular , Necrose/imunologia , Necrose/metabolismo , Necrose/virologia , Pisum sativum/genética , Pisum sativum/imunologia , Pisum sativum/metabolismo , Pisum sativum/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Vicia faba/imunologia , Vicia faba/metabolismo , Vicia faba/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...