Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(3): e0193603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29570718

RESUMO

Chloromonas nivalis (Volvocales, Chlorophyceae) is considered a cosmopolitan species of a snow-inhabiting microalga because cysts morphologically identifiable as zygotes of the species are distributed worldwide. However, recent molecular data demonstrated that field-collected cysts identified as the zygotes consist of multiple species. Recently, we demonstrated that species identification of snow-inhabiting Chloromonas species is possible based on light and electron microscopy of asexual life cycles in strains and molecular phylogenetic analyses. Vegetative cells without eyespots and of inverted-teardrop shape have been reported once in North American material of C. nivalis; however, strains with such vegetative cells in snow-inhabiting species of Chloromonas have not been examined taxonomically in detail. Here, we used light and transmission electron microscopy together with molecular analyses of multiple DNA sequences to examine several C. nivalis strains. The morphological data demonstrated that one North American strain could be identified as C. nivalis, whereas three other strains should be re-classified as C. hoshawii sp. nov. and C. remiasii sp. nov. based on vegetative cell morphology, the number of zoospores within the parental cell wall during asexual reproduction, and whether cell aggregates (resulting from repeated divisions of daughter cells retained within a parental cell wall) were observed in the culture. This taxonomic treatment was supported by multigene phylogeny and comparative molecular analyses that included a rapidly evolving DNA region. Our molecular phylogenetic analyses also demonstrated that the North American strain of C. nivalis was phylogenetically separated from the Austrian and Japanese specimens previously identified as C. nivalis based on zygote morphology.


Assuntos
Neve , Volvocida/classificação , Ecossistema , Filogenia , Volvocida/anatomia & histologia
2.
J Phycol ; 52(2): 209-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27037586

RESUMO

Chlamydomonadales are elective subjects for the investigation of the problems related to locomotion and transport in biological fluid dynamics, whose resolution could enhance searching efficiency and assist in the avoidance of dangerous environments. In this paper, we elucidate the swimming behavior of Tetraflagellochloris mauritanica, a unicellular-multicellular alga belonging to the order Chlamydomonadales. This quadriflagellate alga has a complex swimming motion consisting of alternating swimming phases connected by in-place random reorientations and resting phases. It is capable of both forward and backward swimming, both being normal modes of swimming. The complex swimming behavior resembles the run-and-tumble motion of peritrichous bacteria, with in-place reorientation taking the place of tumbles. In the forward swimming, T. mauritanica shows a very efficient flagellar beat, with undulatory retrograde waves that run along the flagella to their tip. In the backward swimming, the flagella show a nonstereotypical synchronization mode, with a pattern that does not fit any of the modes present in the other Chlamydomonadales so far investigated.


Assuntos
Flagelos/fisiologia , Volvocida/fisiologia , Rastreamento de Células , Flagelos/ultraestrutura , Movimento , Fatores de Tempo , Volvocida/anatomia & histologia , Volvocida/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...