RESUMO
Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract leading to trichomoniasis, the most common sexually-transmitted non-viral disease worldwide. The immune response plays a critical role in the host defense against this parasite. Trichomonas' DNA contains unmethylated CpG motifs (CpGDNA) that in other microorganisms act as modulators of the immune response. However, the molecular mechanisms responsible for CpGDNA immune modulation are still unclear. As macrophages participate in the first line of defense against infection, we investigated the type of immune response of murine macrophages to T. vaginalis DNA (TvDNA). We observed high expression of the proinflammatory cytokines IL-6 and IL-12p40 in macrophages stimulated with TvDNA. In contrast, the anti-inflammatory response, assessed by IL-10 and IL-13 mRNA expression was delayed. This suggests that the immune response induced by TvDNA is modulated through cytokine production, mediated partly by NADPH-oxidase activity, as TvDNA induced reactive species of oxygen production and a rounded morphology in macrophages indicative of an M1 phenotype. Furthermore, infected mice pretreated with TvDNA displayed persistent vulvar inflammation and decreased parasite viability consistent with higher proinflammatory cytokine levels during infection compared to untreated mice. Overall, our findings suggest that TvDNA pretreatment modulates the immune response favouring parasite elimination.
Assuntos
Citocinas/imunologia , DNA de Protozoário/administração & dosagem , Macrófagos/parasitologia , Trichomonas vaginalis/fisiologia , Animais , Ilhas de CpG , Feminino , Imunomodulação , Inflamação , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Vulva/imunologia , Vulva/fisiopatologiaRESUMO
Trichomonas vaginalis (Tv) is a flagellated parasite commonly spread through sexual transmission. This protozoan initiates a severe inflammatory process, inducing nitric oxide, interleukin-6 (IL-6), IL-8, IL-10, IL-17 and IL-22 production by host immune cells. The parasites elicit these responses by releasing surface lipophosphoglycan, small extracellular vesicles (exosomes) and other factors. Tv exosomes are similar to mammalian exosomes and have been implicated in the modulation of IL-8 secretion by epithelial cells. Here, we report that exosome-like vesicles from T. vaginalis (Tv-ELVs) induced a more than 15-fold increase in IL-10 expression in RAW264.7 macrophages but only a two fold increase in IL-6 and TNF-α expression levels measured by RT-PCR. Because Tv-ELVs modulated the macrophage response, we also explored the effect of Tv-ELVs in a murine model of infection. Pretreatment with Tv-ELVs significantly increased IL-10 production as measured in vaginal washes by days 8 and 16 post-infection. Remarkably, Tv-ELVs-pretreated mice exhibited a decrease in IL-17 production and a significant decrease in vulvar inflammation. In addition, IL-6 and IL-13 were decreased during infection. Our results suggest that Tv-ELVs have an immunomodulatory role on the cytokine profile induced by the parasite and promote a decrease in the inflammatory process in mice infected with T. vaginalis.