Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(30): 11536-11548, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31182484

RESUMO

An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.


Assuntos
Alcanos/metabolismo , Formiato Desidrogenases/metabolismo , Engenharia Metabólica/métodos , Xanthobacter/metabolismo , Biocombustíveis , Catálise , Clonagem Molecular , Escherichia coli/genética , Ácidos Graxos/metabolismo , Formiato Desidrogenases/genética , NAD/metabolismo , Oxirredução , Xanthobacter/enzimologia
2.
Mol Biotechnol ; 61(7): 477-488, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919327

RESUMO

The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.


Assuntos
Proteínas de Bactérias/química , Simulação por Computador , Hidrolases/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/síntese química , Hidrolases/biossíntese , Hidrolases/síntese química , Conformação Proteica , Especificidade por Substrato , Xanthobacter/enzimologia
3.
J Biol Chem ; 294(13): 5137-5145, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696768

RESUMO

NADPH: 2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a bacterial disulfide oxidoreductase (DSOR) that, uniquely in this family, catalyzes CO2 fixation. 2-KPCC differs from other DSORs by having a phenylalanine that replaces a conserved histidine, which in typical DSORs is essential for stabilizing the reduced, reactive form of the active site. Here, using site-directed mutagenesis and stopped-flow kinetics, we examined the reactive form of 2-KPCC and its single turnover reactions with a suicide substrate and CO2 The reductive half-reaction of 2-KPCC was kinetically and spectroscopically similar to that of a typical DSOR, GSH reductase, in which the active-site histidine had been replaced with an alanine. However, the reduced, reactive form of 2-KPCC was distinct from those typical DSORs. In the absence of the histidine, the flavin and disulfide moieties were no longer coupled via a covalent or charge transfer interaction as in typical DSORs. Similar to thioredoxins, the pKa between 7.5 and 8.1 that controls reactivity appeared to be due to a single proton shared between the cysteines of the dithiol, which effectively stabilizes the attacking cysteine sulfide and renders it capable of breaking the strong C-S bond of the substrate. The lack of a histidine protected 2-KPCC's reactive intermediate from unwanted protonation; however, without its input as a catalytic acid-base, the oxidative half-reaction where carboxylation takes place was remarkably slow, limiting the overall reaction rate. We conclude that stringent regulation of protons in the DSOR active site supports C-S bond cleavage and selectivity for CO2 fixation.


Assuntos
Dióxido de Carbono/metabolismo , Cetona Oxirredutases/metabolismo , Xanthobacter/enzimologia , Domínio Catalítico , Cetona Oxirredutases/química , Cinética , Modelos Moleculares , NADP/metabolismo , Oxirredução , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/metabolismo
4.
ACS Synth Biol ; 7(12): 2758-2764, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30433765

RESUMO

The Ehrlich pathway is a major route for the renewable production of higher alcohols. However, the product scope of the Ehrlich pathway is restricted, and the product selectivity is suboptimal. Here, we demonstrate that a Coenzyme A (CoA) detour, which involves conversion of the 2-keto acids into acyl-CoAs, expands the biological toolkit of reaction chemistries available in the Ehrlich pathway to include the gamut of CoA-dependent enzymes. As a proof-of-concept, we demonstrated the first biosynthesis of a tertiary branched-alcohol, pivalcohol, at a level of ∼10 mg/L from glucose in Escherichia coli, using a pivalyl-CoA mutase from Xanthobacter autotrophicus. Furthermore, engineering an enzyme in the CoA detour, the Lactobacillus brevis CoA-acylating aldehyde dehydrogenase, allowed stringent product selectivity. Targeted production of 3-methyl-1-butanol (3-MB) in E. coli mediated by the CoA detour showed a 3-MB:side-product (isobutanol) ratio of >20, an increase over the ratios previously achieved using the conventional Ehrlich pathway.


Assuntos
Coenzima A/metabolismo , Engenharia Metabólica/métodos , Pentanóis/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Escherichia coli/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Levilactobacillus brevis/enzimologia , Pentanóis/química , Plasmídeos/genética , Plasmídeos/metabolismo , Xanthobacter/enzimologia
5.
J Biol Chem ; 293(29): 11505-11512, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29858243

RESUMO

Haloalkane dehalogenases catalyze the hydrolysis of halogen-carbon bonds in organic halogenated compounds and as such are of great utility as biocatalysts. The crystal structures of the haloalkane dehalogenase DhlA from the bacterium from Xanthobacter autotrophicus GJ10, specifically adapted for the conversion of the small 1,2-dichloroethane (DCE) molecule, display the smallest catalytic site (110 Å3) within this enzyme family. However, during a substrate-specificity screening, we noted that DhlA can catalyze the conversion of far bulkier substrates, such as the 4-(bromomethyl)-6,7-dimethoxy-coumarin (220 Å3). This large substrate cannot bind to DhlA without conformational alterations. These conformational changes have been previously inferred from kinetic analysis, but their structural basis has not been understood. Using molecular dynamic simulations, we demonstrate here the intrinsic flexibility of part of the cap domain that allows DhlA to accommodate bulky substrates. The simulations displayed two routes for transport of substrates to the active site, one of which requires the conformational change and is likely the route for bulky substrates. These results provide insights into the structure-dynamics function relationships in enzymes with deeply buried active sites. Moreover, understanding the structural basis for the molecular adaptation of DhlA to 1,2-dichloroethane introduced into the biosphere during the industrial revolution provides a valuable lesson in enzyme design by nature.


Assuntos
Cumarínicos/metabolismo , Hidrolases/metabolismo , Xanthobacter/enzimologia , Domínio Catalítico , Cumarínicos/química , Cristalografia por Raios X , Dicloretos de Etileno/metabolismo , Halogenação , Hidrolases/química , Cinética , Metilação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/metabolismo
6.
FEBS Lett ; 590(17): 2991-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27447465

RESUMO

The characteristic His-Glu catalytic dyad of the disulfide oxidoreductase (DSOR) family of enzymes is replaced in 2-ketopropyl coenzyme M oxidoreductase/carboxylase (2-KPCC) by the residues Phe-His. 2-KPCC is the only known carboxylating member of the DSOR family and has replaced this dyad potentially to eliminate proton-donating groups at a key position in the active site. Substitution of the Phe-His by the canonical residues results in production of higher relative concentrations of acetone versus the natural product acetoacetate. The results indicate that these differences in 2-KPCC are key in discriminating between carbon dioxide and protons as attacking electrophiles.


Assuntos
Catálise , Dipeptídeos/química , Cetona Oxirredutases/química , Dióxido de Carbono/química , Domínio Catalítico , Dipeptídeos/metabolismo , Cetona Oxirredutases/metabolismo , Prótons , Especificidade por Substrato , Xanthobacter/química , Xanthobacter/enzimologia
7.
J Biol Chem ; 290(33): 20466-76, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134562

RESUMO

Adenosylcobalamin-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently demonstrated that an isobutyryl-CoA mutase variant, IcmF, a member of this enzyme family that catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA also catalyzes the interconversion between isovaleryl-CoA and pivalyl-CoA, albeit with low efficiency and high susceptibility to inactivation. Given the biotechnological potential of the isovaleryl-CoA/pivalyl-CoA mutase (PCM) reaction, we initially attempted to engineer IcmF to be a more proficient PCM by targeting two active site residues predicted based on sequence alignments and crystal structures, to be key to substrate selectivity. Of the eight mutants tested, the F598A mutation was the most robust, resulting in an ∼17-fold increase in the catalytic efficiency of the PCM activity and a concomitant ∼240-fold decrease in the isobutyryl-CoA mutase activity compared with wild-type IcmF. Hence, mutation of a single residue in IcmF tuned substrate specificity yielding an ∼4000-fold increase in the specificity for an unnatural substrate. However, the F598A mutant was even more susceptible to inactivation than wild-type IcmF. To circumvent this limitation, we used bioinformatics analysis to identify an authentic PCM in genomic databases. Cloning and expression of the putative AdoCbl-dependent PCM with an α2ß2 heterotetrameric organization similar to that of isobutyryl-CoA mutase and a recently characterized archaeal methylmalonyl-CoA mutase, allowed demonstration of its robust PCM activity. To simplify kinetic analysis and handling, a variant PCM-F was generated in which the αß subunits were fused into a single polypeptide via a short 11-amino acid linker. The fusion protein, PCM-F, retained high PCM activity and like PCM, was resistant to inactivation. Neither PCM nor PCM-F displayed detectable isobutyryl-CoA mutase activity, demonstrating that PCM represents a novel 5'-deoxyadenosylcobalamin-dependent acyl-CoA mutase. The newly discovered PCM and the derivative PCM-F, have potential applications in bioremediation of pivalic acid found in sludge, in stereospecific synthesis of C5 carboxylic acids and alcohols, and in the production of potential commodity and specialty chemicals.


Assuntos
Cobamidas/metabolismo , Transferases Intramoleculares/metabolismo , Acil Coenzima A , Sequência de Aminoácidos , Cobamidas/química , Transferases Intramoleculares/química , Cinética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xanthobacter/enzimologia
8.
World J Microbiol Biotechnol ; 31(8): 1211-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957483

RESUMO

Xanthobacter autotrophicus GJ10 has been widely studied because of its ability to degrade halogenated compounds, especially 1,2-dichloroethane (1,2-DCA), which is achieved through chromosomal as well as plasmid pAUX1 encoded 1,2-DCA degrading genes. This work described the gene expression and enzyme activity profiles as well as the intermediates formed during the 1,2-DCA degradation by this organism. A correlation between gene expression, enzyme activity and metabolic intermediates, after the induction of GJ10 grown culture with 1,2-DCA, was established at different time intervals. Haloalkane dehalogenase (dhlA) and haloacid dehalogenase (dhlB) were constitutively expressed while the expression of alcohol dehydrogenase (max) and aldehyde dehydrogenase (ald) was found to be inducible. The DhlA and DhlB activities were relatively higher compared to that of the inducible enzymes, Max and Ald. To the best of our knowledge, this is the first study to correlate gene expression profiles with enzyme activity and metabolite formation during 1,2-DCA degradation process in GJ10. Findings from this study may assist in fully understanding the mechanism of 1,2-DCA degradation by GJ10. It could also assist in the design and implementation of appropriate bioaugmentation strategies for complete removal of 1,2-DCA from contaminated environment.


Assuntos
Proteínas de Bactérias/metabolismo , Dicloretos de Etileno/metabolismo , Hidrolases/metabolismo , Xanthobacter/enzimologia , Xanthobacter/genética , Aerobiose , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biodegradação Ambiental , Clonagem Molecular , Hidrolases/genética , Xanthobacter/metabolismo
9.
Chemistry ; 21(19): 7159-69, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25808731

RESUMO

Understanding enzyme catalysis and developing ability to control of it are two great challenges in biochemistry. A few successful examples of computational-based enzyme design have proved the fantastic potential of computational approaches in this field, however, relatively modest rate enhancements have been reported and the further development of complementary methods is still required. Herein we propose a conceptually simple scheme to identify the specific role that each residue plays in catalysis. The scheme is based on a breakdown of the total catalytic effect into contributions of individual protein residues, which are further decomposed into chemically interpretable components by using valence bond theory. The scheme is shown to shed light on the origin of catalysis in wild-type haloalkane dehalogenase (wt-DhlA) and its mutants. Furthermore, the understanding gained through our scheme is shown to have great potential in facilitating the selection of non-optimal sites for catalysis and suggesting effective mutations to enhance the enzymatic rate.


Assuntos
Hidrolases/metabolismo , Xanthobacter/enzimologia , Biocatálise , Hidrolases/química , Hidrolases/genética , Modelos Moleculares , Mutação , Conformação Proteica , Teoria Quântica , Termodinâmica , Xanthobacter/química , Xanthobacter/genética , Xanthobacter/metabolismo
10.
Arch Biochem Biophys ; 533(1-2): 62-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474457

RESUMO

(R)- and (S)-hydroxypropyl-coenzyme M dehydrogenases (R- and S-HPCDH) are stereospecific enzymes that are central to the metabolism of propylene and epoxide in Xanthobacter autotrophicus. The bacterium produces R- and S-HPCDH simultaneously to facilitate transformation of R- and S-enantiomers of epoxypropane to a common achiral product 2-ketopropyl-CoM (2-KPC). Both R- and S-HPCDH are highly specific for their respective substrates as each enzyme displays less than 0.5% activity with the opposite substrate isomer. In order to elucidate the structural basis for stereospecificity displayed by R- and S-HPCDH we have determined substrate bound crystal structures of S-HPCDH to 1.6Å resolution. Comparisons to the previously reported product-bound structure of R-HPCDH reveal that although the placement of catalytic residues within the active site of each enzyme is nearly identical, structural differences in the surrounding area provide each enzyme with a distinct substrate binding pocket. These structures demonstrate how chiral discrimination by R- and S-HPCDH results from alternative binding of the distal end of substrates within each substrate binding pocket.


Assuntos
Mesna/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estereoisomerismo , Especificidade por Substrato , Xanthobacter/enzimologia
11.
J Biosci Bioeng ; 114(3): 306-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22578591

RESUMO

Tris(2-chloroethyl) phosphate (TCEP), a flame retardant, is recently regarded as a potentially toxic and persistent environmental contaminant. We previously isolated TCEP-degrading bacterium, Sphingobium sp. strain TCM1, which, however, produced a toxic metabolite: 2-chloroethanol (2-CE). This study was undertaken to develop a detoxification technique of TCEP using strain TCM1 with a 2-CE-degrading bacterium: Xanthobacter autotrophicus strain GJ10. TCEP degradation by strain TCM1-resting cells was thermally stable for 30 min at 30 °C. It was optimal at 30 °C and at pH 8.5. In the optimum condition, TCM1 cells up to a final cell density of 0.8 at OD(660) in the reaction mixture were unable to hydrolyze the phosphotriester bonds of 10 µM TCEP completely. The addition of 50 µM Co(2+) to reaction mixture enhanced the hydrolysis and caused the complete hydrolysis at the cell density of 0.8. Strain GJ10 resting cells degraded 2-CE only slightly, which might be attributable to lack of coenzyme regeneration of enzymes involved in the degradation. In contrast, the growing cells degraded approximately 180 µM of 2-CE within 24 h. Based on these results, we designed a two-step TCEP detoxification reaction consisting of TCEP hydrolysis to 2-CE by strain TCM1-resting cells and the following degradation of the resulting 2-CE by strain GJ10-growing cells. The combined reaction completely detoxified 10 µM TCEP, and thus opens a way to microbial detoxification of the potential toxic, persistent organophosphorus compound.


Assuntos
Organofosfatos/metabolismo , Sphingomonadaceae/metabolismo , Xanthobacter/metabolismo , Retardadores de Chama/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Inativação Metabólica , Temperatura , Xanthobacter/enzimologia
12.
J Bacteriol ; 193(18): 4904-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764916

RESUMO

NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the aforementioned site-directed mutants. We interpreted and rationalized these results in terms of a mechanism of catalysis for 2-KPCC employing a unique hydrophobic active-site architecture promoting thioether bond cleavage and enolacetone formation not seen for other DSOR enzymes.


Assuntos
Domínio Catalítico , Dissulfetos/metabolismo , Histidina/metabolismo , Cetona Oxirredutases/metabolismo , Xanthobacter/enzimologia , Cetona Oxirredutases/genética , Cinética , Mesna/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Xanthobacter/química , Xanthobacter/genética , Xanthobacter/metabolismo
13.
Biochem J ; 435(2): 345-54, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21294712

RESUMO

An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.


Assuntos
Hidrolases/metabolismo , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/classificação , Hidrolases/genética , Hidrolases/fisiologia , Modelos Biológicos , Proteínas Mutantes/classificação , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Filogenia , Rhodococcus/enzimologia , Rhodococcus/genética , Rhodococcus/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/genética , Sphingobacterium/metabolismo , Especificidade por Substrato , Xanthobacter/enzimologia , Xanthobacter/genética , Xanthobacter/metabolismo
14.
FEBS Lett ; 585(3): 459-64, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21192936

RESUMO

The structure of 2-ketopropyl coenzyme M oxidoreductase/carboxylase (2-KPCC) has been determined in a state in which CO(2) is observed providing insights into the mechanism of carboxylation. In the substrate encapsulated state of the enzyme, CO(2) is bound at the base of a narrow hydrophobic substrate access channel. The base of the channel is demarcated by a transition from a hydrophobic to hydrophilic environment where CO(2) is located in position for attack on the carbanion of the ketopropyl group of the substrate to ultimately produce acetoacetate. This binding mode effectively discriminates against H(2)O and prevents protonation of the ketopropyl leaving group.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cetona Oxirredutases/química , Cetona Oxirredutases/metabolismo , Xanthobacter/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Interações Hidrofóbicas e Hidrofílicas , Mesna/análogos & derivados , Mesna/química , Mesna/metabolismo , Conformação Proteica
15.
Arch Microbiol ; 192(11): 945-57, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844868

RESUMO

Coenzyme M (CoM, 2-mercaptoethanesulfonate), once thought to be exclusively produced by methanogens, is now known to be the central cofactor in the metabolism of short-chain alkenes by a variety of aerobic bacteria. There is little evidence to suggest how, and under what conditions, CoM is biosynthesized by these organisms. A shotgun proteomics approach was used to investigate CoM-dependent propylene metabolism in the Gram-negative bacterium Xanthobacter autotrophicus Py2. Cells were grown on either glucose or propylene, and the soluble proteomes were analyzed. An average of 395 proteins was identified from glucose-grown replicates, with an average of 419 identified from propylene-grown replicates. A number of linear megaplasmid (pXAUT01)-encoded proteins were found to be specifically produced by growth on propylene. These included all known to be crucial to propylene metabolism, in addition to an aldehyde dehydrogenase, a DNA-binding protein, and five putative CoM biosynthetic enzymes. This work has provided fresh insight into bacterial alkene metabolism and has generated new targets for future studies in X. autotrophicus Py2 and related CoM-dependent alkene-oxidizing bacteria.


Assuntos
Alcenos/metabolismo , Mesna/metabolismo , Proteômica , Xanthobacter/crescimento & desenvolvimento , Acetona/metabolismo , Meios de Cultura , Compostos de Epóxi/metabolismo , Glucose/metabolismo , Oxigenases/metabolismo , Xanthobacter/enzimologia , Xanthobacter/metabolismo
16.
Biochemistry ; 49(16): 3487-98, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20302306

RESUMO

(R)- and (S)-2-hydroxypropyl-CoM (R-HPC and S-HPC) are produced as intermediates in bacterial propylene metabolism from the nucleophilic addition of coenzyme M to (R)- and (S)-epoxypropane, respectively. Two highly enantioselective dehydrogenases (R-HPCDH and S-HPCDH) belonging to the short-chain dehydrogenase/reductase family catalyze the conversion of R-HPC and S-HPC to 2-ketopropyl-CoM (2-KPC), which undergoes reductive cleavage and carboxylation to produce acetoacetate. In the present study, one of three copies of S-HPCDH enzymes present on a linear megaplasmid in Xanthobacter autotrophicus strain Py2 has been cloned and overexpressed, allowing the first detailed side by side characterization of the R-HPCDH and S-HPCDH enzymes. The catalytic triad of S-HPCDH was found to consist of Y156, K160, and S143. R211 and K214 were identified as the amino acid residues coordinating the sulfonate of CoM in S-HPC. R211A and K214A mutants were severely impaired in the oxidation of S-HPC or reduction of 2-KPC but were largely unaffected in the oxidation and reduction of aliphatic alcohols and ketones. Kinetic analyses using R- and S-HPC as substrates revealed that enantioselectivity in R-HPCDH (value, 944) was dictated largely by differences in k(cat) while enantioselectivity for S-HPCDH (value, 1315) was dictated largely by changes in K(m). S-HPCDH had an inherent high enantioselectivity for producing (S)-2-butanol from 2-butanone that was unaffected by modulators that interact with the sulfonate binding site. The tertiary alcohol 2-methyl-2-hydroxypropyl-CoM (M-HPC) was a competitive inhibitor of R-HPCDH-catalyzed R-HPC oxidation, with a K(is) similar to the K(m) for R-HPC, but was not an inhibitor of S-HPCDH. The primary alcohol 2-hydroxyethyl-CoM was a substrate for both R-HPCDH and S-HPCDH with identical K(m) values. The pH dependence of kinetic parameters suggests that the hydroxyl group is a larger contributor to S-HPC binding to S-HPCDH than for R-HPC binding to R-HPCDH. It is proposed that active site constraints within the S-HPCDH prevent proper binding of R-HPC and M-HPC due to steric clashes with the improperly aligned methyl group on the C2 carbon, resulting in a different mechanism for controlling substrate specificity and enantioselectivity than present in the R-HPCDH.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Xanthobacter/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/genética , Substituição de Aminoácidos , Sequência de Bases , Biologia Computacional , Primers do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
17.
Isotopes Environ Health Stud ; 45(1): 18-26, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19191123

RESUMO

The effect of the number of carbon and chlorine atoms on carbon isotope fractionation during dechlorination of chlorinated alkanes by Xanthobacter autotrophicus GJ10 was studied using pure culture and cell-free extract experiments. The magnitude of carbon isotope fractionation decreased with increasing carbon number. The decrease can be explained by an increasing probability that the heavy isotope is located at a non-reacting position for increasing molecule size. The isotope data were corrected for the number of carbons as well as the number of reactive sites to obtain reacting-site-specific values denoted as apparent kinetic isotope effect (AKIE). Even after the correction, the obtained AKIE values varied (on average 1.0608, 1.0477, 1.0616, and 1.0555 for 1,2-dichloroethane, chloropentane, 1,3-dichloropentane and chlorobutane, respectively). Cell-free extract experiments were carried out to evaluate the effect of transport across the cell membrane on the observed variability in the AKIE values, which revealed that variability still persisted. The study demonstrates that even after differences related to the carbon number and structure of the molecule are taken into account, there still remain differences in AKIE values even for compounds that are degraded by the same pure culture and an identical reaction mechanism.


Assuntos
Alcanos/química , Carbono/química , Xanthobacter/metabolismo , Alcanos/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/enzimologia , Sistema Livre de Células/metabolismo , Fracionamento Químico , Halogenação , Cinética , Xanthobacter/enzimologia , Xanthobacter/crescimento & desenvolvimento
18.
Microbiol Mol Biol Rev ; 72(3): 445-56, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18772284

RESUMO

Coenzyme M (2-mercaptoethanesulfonate; CoM) is one of several atypical cofactors discovered in methanogenic archaea which participate in the biological reduction of CO(2) to methane. Elegantly simple, CoM, so named for its role as a methyl carrier in all methanogenic archaea, is the smallest known organic cofactor. It was thought that this cofactor was used exclusively in methanogenesis until it was recently discovered that CoM is a key cofactor in the pathway of propylene metabolism in the gram-negative soil microorganism Xanthobacter autotrophicus Py2. A four-step pathway requiring CoM converts propylene and CO(2) to acetoacetate, which feeds into central metabolism. In this process, CoM is used to activate and convert highly electrophilic epoxypropane, formed from propylene epoxidation, into a nucleophilic species that undergoes carboxylation. The unique properties of CoM provide a chemical handle for orienting compounds for site-specific redox chemistry and stereospecific catalysis. The three-dimensional structures of several of the enzymes in the pathway of propylene metabolism in defined states have been determined, providing significant insights into both the enzyme mechanisms and the role of CoM in this pathway. These studies provide the structural basis for understanding the efficacy of CoM as a handle to direct organic substrate transformations at the active sites of enzymes.


Assuntos
Alcenos/metabolismo , Mesna/química , Mesna/metabolismo , Xanthobacter/enzimologia , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Xanthobacter/genética , Xanthobacter/crescimento & desenvolvimento
19.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 9): 1000-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704569

RESUMO

Haloalkane dehalogenase from Xanthobacter autotrophicus (XaDHL) was overexpressed under different isotopic conditions to produce fully hydrogenous (h-XaDHL) and perdeuterated (d-XaDHL) enzyme forms. Deuterium atoms at labile positions were allowed to back-exchange during purification and hydrogenous solutions were used for crystallization. Optimal crystals of h-XaDHL and d-XaDHL were obtained under different pH conditions (pH 6.0 and 4.6, respectively) but had similar P2(1)2(1)2 unit cells. X-ray diffraction data were refined to 1.53 A (h-XaDHL) and 1.55 A (d-XaDHL) with excellent overall statistics. The conformations of h-XaDHL and d-XaDHL are similar, with slightly altered surface regions because of different packing environments, and h-XaDHL is found to have a more hydrophobic core than d-XaDHL. The active site of h-XaDHL is similar to those of previously determined structures, but the active site of d-XaDHL unexpectedly has some crucial differences. Asp124, the primary nucleophile in the hydrolysis of haloalkane substrates, is displaced from its position in h-XaDHL and rotates to form a hydrogen bond with His289. As a consequence, the water molecule proposed to function as the nucleophile in the next catalytic step is excluded from the active site. This is the first observation of this unusual active-site configuration, which is obtained as a result of perdeuteration that decreases the hydrophobicity of the enzyme, therefore shifting the optimal pH of crystallization. This d-XaDHL structure is likely to represent the termination state of the catalytic reaction and provides an explanation for the acid inhibition of XaDHL. These results underline the importance of carefully verifying the assumption that isotopic substitution does not produce significant structural changes in protein structures.


Assuntos
Hidrolases/química , Xanthobacter/enzimologia , Ácido Aspártico/química , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Deutério/química , Histidina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Difração de Raios X
20.
Biochemistry ; 46(32): 9239-49, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17645312

RESUMO

The catalytic site of haloalkane dehalogenase DhlA is buried more than 10 A from the protein surface. While potential access channels to this site have been reported, the precise mechanism of substrate import and product export is still unconfirmed. We used computational methods to examine surface pockets and their putative roles in ligand access to and from the catalytic site. Computational solvent mapping moves small organic molecule as probes over the protein surface in order to identify energetically favorable sites, that is, regions that tend to bind a variety of molecules. The mapping of three DhlA structures identifies seven such regions, some of which have been previously suggested to be involved in the binding and the import/export of substrates or products. These sites are the active site, the putative entrance of the channel leading to the active site, two pockets that bind Br- ions, a pocket in the slot region, and two additional sites between the main domain and the cap of DhlA. We also performed mapping and free energy analysis of the DhlA structures using the substrate, 1,2-dichloroethane, and halide ions as probes. The findings were compared to crystallographic data and to results obtained by CAVER, a program developed for finding routes from protein clefts and cavities to the surface. Solvent mapping precisely reproduced all three Br- binding sites identified by protein crystallography and the openings to four channels found by CAVER. The analyses suggest that (i) the active site has the highest affinity for the substrate molecule, (ii) the substrate initially binds at the entrance of the main tunnel, (iii) the site Br2, close to the entrance, is likely to serve as an intermediate binding site in product export, (iv) the site Br3, induced in the structure at high concentrations of Br-, could be part of an auxiliary route for product release, and (v) three of the identified sites are likely to be entrances of water-access channels leading to the active site. For comparison, we also mapped haloalkane dehalogenases DhaA and LinB, both of which contain significantly larger and more solvent accessible binding sites than DhlA. The mapping of DhaA and LinB places the majority of probes in the active site, but most of the other six regions consistently identified in DhlA were not observed, suggesting that the more open active site eliminates the need for intermediate binding sites for the collision complex seen in DhlA.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Xanthobacter/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Dicloretos de Etileno/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...