Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 19(4): 786-800, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28742234

RESUMO

Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. TAXONOMY: Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. MICROBIOLOGICAL PROPERTIES: Gram-negative rod (0.25-0.35 × 0.9-3.5 µm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. HOST RANGE: Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of plants tested, whereas some subspecies are not as stringent in their host range and can infect several plant hosts. DISEASE SYMPTOMS: Most X. fastidiosa-related diseases appear as marginal leaf necrosis and scorching of the leaves. In the case of PD, X. fastidiosa can also cause desiccation of berries (termed 'raisining'), irregular periderm development and abnormal abscission of petioles. In olive trees affected with OQDS, leaves exhibit marginal necrosis and defoliation, and overall tree decline occurs. Plants with ALS and OLS also exhibit the characteristic leaf scorch symptoms. Not all X. fastidiosa-related diseases exhibit the typical leaf scorch symptoms. These include CVC and Phony Peach disease, amongst others. In the case of CVC, symptoms include foliar wilt and interveinal chlorosis on the upper surfaces of the leaves (similar to zinc deficiency), which correspond to necrotic, gum-like regions on the undersides of the leaves. Additional symptoms of CVC include defoliation, dieback and hardening of fruits. Plants infected with Phony Peach disease exhibit a denser, more compact canopy (as a result of shortened internodes, darker green leaves and delayed leaf senescence), premature bloom and reduced fruit size. Some occlusions occur in the xylem vessels, but there are no foliar wilting, chlorosis or necrosis symptoms . USEFUL WEBSITES: http://www.piercesdisease.org/; https://pubmlst.org/xfastidiosa/; http://www.xylella.lncc.br/; https://nature.berkeley.edu/xylella/; https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa_en.


Assuntos
Doenças das Plantas/microbiologia , Xylella/patogenicidade , Animais , Gammaproteobacteria/patogenicidade , Insetos Vetores , Vitis/microbiologia , Xanthomonadaceae/patogenicidade
2.
Sci Rep ; 7(1): 16133, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170530

RESUMO

The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Xanthomonadaceae/metabolismo , Xanthomonadaceae/patogenicidade , Proteínas de Bactérias/genética , Filogenia , Virulência
3.
Adv Exp Med Biol ; 715: 71-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21557058

RESUMO

The family Xanthomonadaceae is a wide-spread family of bacteria belonging to the gamma subdivision of the Gram-negative proteobacteria, including the two plant-pathogenic genera Xanthomonas and Xylella, and the related genus Stenotrophomonas. Adhesion is a widely conserved virulence mechanism among Gram-negative bacteria, no matter whether they are human, animal or plant pathogens, since attachment to the host tissue is one of the key early steps of the bacterial infection process. Bacterial attachment to surfaces is mediated by surface structures that are anchored in the bacterial outer membrane and cover a broad group of fimbrial and non-fimbrial structures, commonly known as adhesins. In this chapter, we discuss recent findings on candidate adhesins of plant-pathogenic Xanthomonadaceae, including polysaccharidic (lipopolysaccharides, exopolysaccharides) and proteineous structures (chaperone/usher pili, type IV pili, autotransporters, two-partner-secreted and other outer membrane adhesins), their involvement in the formation of biofilms and their mode of regulation via quorum sensing. We then compare the arsenals of adhesins among different Xanthomonas strains and evaluate their mode of selection. Finally, we summarize the sparse knowledge on specific adhesin receptors in plants and the possible role of RGD motifs in binding to integrin-like plant molecules.


Assuntos
Aderência Bacteriana/fisiologia , Plantas/microbiologia , Xanthomonadaceae/fisiologia , Xanthomonadaceae/patogenicidade , Adesinas Bacterianas/fisiologia , Fímbrias Bacterianas/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos/fisiologia , Receptores Imunológicos/fisiologia , Virulência/fisiologia
4.
BMC Genomics ; 10: 346, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19646265

RESUMO

BACKGROUND: The genomic fractions of purine (RR) and alternating pyrimidine/purine (YR) stretches of 10 base pairs or more, have been linked to genomic AT content, the formation of different DNA helices, strand-biased gene distribution, DNA structure, and more. Although some of these factors are a consequence of the chemical properties of purines and pyrimidines, a thorough statistical examination of the distributions of YR/RR stretches in sequenced prokaryotic chromosomes has to the best of our knowledge, not been undertaken. The aim of this study is to expand upon previous research by using regression analysis to investigate how AT content, habitat, growth temperature, pathogenicity, phyla, oxygen requirement and halotolerance correlated with the distribution of RR and YR stretches in prokaryotes. RESULTS: Our results indicate that RR and YR-stretches are differently distributed in prokaryotic phyla. RR stretches are overrepresented in all phyla except for the Actinobacteria and beta-Proteobacteria. In contrast, YR tracts are underrepresented in all phyla except for the beta-Proteobacterial group. YR-stretches are associated with phylum, pathogenicity and habitat, whilst RR-tracts are associated with phylum, AT content, oxygen requirement, growth temperature and halotolerance. All associations described were statistically significant with p < 0.001. CONCLUSION: Analysis of chromosomal distributions of RR/YR sequences in prokaryotes reveals a set of associations with environmental factors not observed with mono- and oligonucleotide frequencies. This implies that important information can be found in the distribution of RR/YR stretches that is more difficult to obtain from genomic mono- and oligonucleotide frequencies. The association between pathogenicity and fractions of YR stretches is assumed to be linked to recombination and horizontal transfer.


Assuntos
Células Procarióticas/química , Células Procarióticas/citologia , Purinas/química , Pirimidinas/química , Proliferação de Células , Genoma , Temperatura , Xanthomonadaceae/genética , Xanthomonadaceae/crescimento & desenvolvimento , Xanthomonadaceae/patogenicidade
5.
Sci Signal ; 1(21): pe23, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18506032

RESUMO

The virulence of plant pathogenic bacteria belonging to the genera Xanthomonas and Xylella depends upon cell-to-cell signaling mediated by the diffusible signal molecule DSF (Diffusible Signaling Factor). Synthesis and perception of the DSF signal require products of the rpf gene cluster. The synthesis of DSF depends on RpfF, whereas the RpfC/RpfG two-component system is implicated in DSF perception and signal transduction. The sensor RpfC acts to negatively regulate synthesis of DSF. In Xanthomonas campestris, mutation of rpfF or rpfC leads to a coordinate down-regulation in synthesis of virulence factors and a reduction in virulence. In contrast, in Xylella fastidiosa, the causal agent of Pierce's disease of grape, mutation of rpfF and rpfC have opposite effects on virulence, with rpfF mutants exhibiting a hypervirulent phenotype. The findings suggest that different xanthomonads have adapted the perception and function of similar types of signaling molecule to fit the specific needs for colonization of different hosts.


Assuntos
Comunicação Celular , Plantas/microbiologia , Xanthomonadaceae/patogenicidade , Células Vegetais , Transdução de Sinais , Virulência , Xanthomonas campestris/patogenicidade , Xylella/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...