Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(6): e14507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884488

RESUMO

Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.


Assuntos
Arabidopsis , Bacteriófagos , Doenças das Plantas , Pseudomonas syringae , Sementes , Sementes/microbiologia , Sementes/virologia , Pseudomonas syringae/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Arabidopsis/virologia , Arabidopsis/microbiologia , Xanthomonas/virologia , Mucilagem Vegetal/metabolismo , Mucilagem Vegetal/química , Agentes de Controle Biológico , Ligação Viral
2.
Arch Virol ; 169(5): 117, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739272

RESUMO

Xanthomonas phage AhaSv was isolated from lake water. Genome sequencing showed that its genome is a linear dsDNA molecule with a length of 55,576 bp and a G+C content of 63.23%. Seventy-one open reading frames (ORFs) were predicted, and no tRNAs were found in the genome. Phylogenetic analysis showed that AhaSv is closely related to members of the genus Salvovirus of the family Casjensviridae. Intergenomic similarity values between phage AhaSv and homologous phages were up to 90.6%, suggesting that phage AhaSv should be considered a member of a new species in the genus Salvovirus.


Assuntos
Bacteriófagos , Genoma Viral , Fases de Leitura Aberta , Filogenia , Xanthomonas , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Composição de Bases , DNA Viral/genética , Lagos/virologia , Lagos/microbiologia , Análise de Sequência de DNA , Xanthomonas/virologia , Xanthomonas/genética , Xanthomonas/classificação
3.
Viruses ; 13(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34696380

RESUMO

Most endolysins of dsDNA phages are exported by a holin-dependent mechanism, while in some cases endolysins are exported via a holin-independent mechanism. However, it is still unclear whether the same endolysins can be exported by both holin-dependent and holin-independent mechanisms. This study investigated the lysis system of OP2-like phage X2 infecting Xanthomonas oryzae pv. oryzae, causing devastating bacterial leaf blight disease in rice. Based on bioinformatics and protein biochemistry methods, we show that phage X2 employs the classic "holin-endolysin" lysis system. The endolysin acts on the cell envelope and exhibits antibacterial effects in vitro, while the holin facilitates the release of the protein into the periplasm. We also characterized the role of the transmembrane domain (TMD) in the translocation of the endolysin across the inner membrane. We found that the TMD facilitated the translocation of the endolysin via the Sec secretion system. The holin increases the efficiency of protein release, leading to faster and more efficient lysis. Interestingly, in E. coli, the expression of either holin or endolysin with TMDs resulted in the formation of long rod shaped cells. We conclude that the TMD of X2-Lys plays a dual role: One is the transmembrane transport while the other is the inhibition of cell division, resulting in larger cells and thus in a higher number of released viruses per cell.


Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/genética , Endopeptidases/genética , Proteínas Virais/genética , Xanthomonas/virologia , Bacteriólise , Bacteriófagos/classificação , Endopeptidases/metabolismo , Escherichia coli/genética , Filogenia
4.
BMC Microbiol ; 21(1): 291, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696726

RESUMO

Phytopathogenic bacteria are economically important because they affect crop yields and threaten the livelihoods of farmers worldwide. The genus Xanthomonas is particularly significant because it is associated with some plant diseases that cause tremendous loss in yields of globally essential crops. Current management practices are ineffective, unsustainable and harmful to natural ecosystems. Bacteriophage (phage) biocontrol for plant disease management has been of particular interest from the early nineteenth century to date. Xanthomonas phage research for plant disease management continues to demonstrate promising results under laboratory and field conditions. AgriPhage has developed phage products for the control of Xanthomonas campestris pv. vesicatoria and Xanthomonas citri subsp. citri. These are causative agents for tomato, pepper spot and speck disease as well as citrus canker disease.Phage-mediated biocontrol is becoming a viable option because phages occur naturally and are safe for disease control and management. Thorough knowledge of biological characteristics of Xanthomonas phages is vital for developing effective biocontrol products. This review covers Xanthomonas phage research highlighting aspects of their ecology, biology and biocontrol applications.


Assuntos
Bacteriófagos/fisiologia , Agentes de Controle Biológico , Xanthomonas/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Produtos Agrícolas/microbiologia , Ecossistema , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Replicação Viral
5.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919362

RESUMO

Xylella fastidiosa (Xf) is a plant pathogen causing significant losses in agriculture worldwide. Originating from America, this bacterium caused recent epidemics in southern Europe and is thus considered an emerging pathogen. As the European regulations do not authorize antibiotic treatment in plants, alternative treatments are urgently needed to control the spread of the pathogen and eventually to cure infected crops. One such alternative is the use of phage therapy, developed more than 100 years ago to cure human dysentery and nowadays adapted to agriculture. The first step towards phage therapy is the isolation of the appropriate bacteriophages. With this goal, we searched for phages able to infect Xf strains that are endemic in the Mediterranean area. However, as Xf is truly a fastidious organism, we chose the phylogenetically closest and relatively fast-growing organism X. albineans as a surrogate host for the isolation step. Our results showed the isolation from various sources and preliminary characterization of several phages active on different Xf strains, namely, from the fastidiosa (Xff), multiplex (Xfm), and pauca (Xfp) subspecies, as well as on X. albilineans. We sequenced their genomes, described their genomic features, and provided a phylogeny analysis that allowed us to propose new taxonomic elements. Among the 14 genomes sequenced, we could identify two new phage species, belonging to two new genera of the Caudoviricetes order, namely, Usmevirus (Podoviridae family) and Subavirus (Siphoviridae family). Interestingly, no specific phages could be isolated from infected plant samples, whereas one was isolated from vector insects captured in a contaminated area, and several from surface and sewage waters from the Marseille area.


Assuntos
Bacteriófagos/fisiologia , Plantas/microbiologia , Xanthomonas/virologia , Xylella/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , DNA Viral , Especificidade de Hospedeiro , Filogenia , Doenças das Plantas/microbiologia , Tropismo Viral , Virulência , Xanthomonas/isolamento & purificação , Xylella/isolamento & purificação
6.
Arch Virol ; 166(4): 1263-1265, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33585960

RESUMO

Xanthomonas oryzae pv. oryzae is a bacterial pathogen that gives rise to diseases in rice all over the world. A bacteriophage infecting this bacterium was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, which has a linear dsDNA genome of 309,023 bp and a G + C content of 42.43%. It contains 401 open reading frames and encodes 28 tRNAs. It belongs to the family Myoviridae and has a broad host range, making it a possible candidate for phage therapy.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Xanthomonas/virologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Composição de Bases , Sequência de Bases , DNA Viral/genética , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Fases de Leitura Aberta , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA de Transferência/genética , Análise de Sequência de DNA , Homologia de Sequência , Microbiologia do Solo
7.
Virology ; 548: 160-167, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838937

RESUMO

Filamentous Inoviridae phages integrate into the chromosome of plant pathogens Xanthomonas as prophages, but their diversity and integrative mechanism are not completely understood. A proviral Cf2 sequence of 6454 bases from Xanthomonas citri genome was revived as infectious virions able to lysogenize its host. Unlike other Xanthomonas phages (Cf1c, φLf, Xf109, XacF1), Cf2 phage has RstA/RstB replication protein, and its attP has XerD binding arm and dif central region but lacks XerC binding arm. XerC+/Xf109 and XerD+/Cf2 attPs are in the opposite direction in phage genomes. Moreover, XerCD binding and XerD catalysis for strand exchange are necessary for site-specific integration of XerD+/Cf2 and XerC+/Xf109 attPs. Taken together, these results provide a new insight into the mechanism of XerCD-mediated recombination at XerD + attP.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Inovirus/fisiologia , Integrases/metabolismo , Xanthomonas/enzimologia , Xanthomonas/virologia , Sítios de Ligação Microbiológicos , Proteínas de Bactérias/genética , Bacteriófagos/genética , Genoma Bacteriano , Inovirus/genética , Integrases/genética , Lisogenia , Integração Viral , Xanthomonas/genética
8.
J Gen Virol ; 101(11): 1219-1226, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840476

RESUMO

Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.


Assuntos
Capsídeo/ultraestrutura , Myoviridae/ultraestrutura , Proteínas do Capsídeo/análise , Microscopia Crioeletrônica , Genoma Viral , Myoviridae/genética , Ralstonia solanacearum/virologia , Xanthomonas/virologia
9.
Arch Virol ; 165(6): 1481-1484, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246284

RESUMO

Xanthomonas phage RiverRider is a novel N4-like bacteriophage and the first phage isolated from the plant pathogen Xanthomonas fragariae. Electron microscopy revealed a Podoviridae morphology consisting of isometric heads and short noncontractile tails. The complete genome of RiverRider is 76,355 bp in length, with 90 open reading frames and seven tRNAs. The genome is characteristic of N4-like bacteriophages in both content and organization, having predicted proteins characterized into the functional groups of transcription, DNA metabolism, DNA replication, lysis, lysis inhibition, structure and DNA packaging. Amino acid sequence comparisons for proteins in these categories showed highest similarities to well-characterized N4-like bacteriophages isolated from Achromobacter xylosoxidans and Erwinia amylovora. However, the tail fiber proteins of RiverRider are clearly distinct from those of other N4-like phages. RiverRider was able to infect seven different strains of X. fragariae and none of the other species of Xanthomonas tested.


Assuntos
Fragaria/microbiologia , Genoma Viral , Podoviridae/classificação , Xanthomonas/virologia , Achromobacter denitrificans/virologia , DNA Viral/genética , Erwinia amylovora/virologia , Microscopia Eletrônica , Fases de Leitura Aberta , Filogenia , Podoviridae/isolamento & purificação , Podoviridae/ultraestrutura , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
10.
Nat Commun ; 10(1): 3048, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296855

RESUMO

Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation-in particular transcription antitermination-is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas Virais/metabolismo , Xanthomonas/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Oryza/microbiologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Regiões Terminadoras Genéticas/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/isolamento & purificação , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Virais/isolamento & purificação , Proteínas Virais/ultraestrutura , Xanthomonas/virologia
11.
J Gen Virol ; 99(10): 1453-1462, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102145

RESUMO

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a serious bacterial disease in rice-growing regions worldwide. Phage therapy has been proposed as a potential measure to treat bacterial infections. In this study, a novel phage, Xoo-sp2, which infects Xoo was isolated from soil. The characteristics of Xoo-sp2, including the morphology, one-step growth curve and host range, were analysed. The genome of phage Xoo-sp2 was sequenced and annotated. The results demonstrated that Xoo-sp2 is a siphovirus and has a broad lytic spectrum, infecting 9 out of 10 representative Xoo strains. Genome analysis showed that the Xoo-sp2 genome consists of a linear double-stranded DNA molecule of length 60 370 bp. Annotation of the whole genome indicated that Xoo-sp2 encodes 79 putative open reading frames (ORFs). Comparative genomics analysis of Xoo-sp2 showed that it shares significant similarity only with Pseudomonas and Stenotrophomonas phages (with maximum identity reaching 80 % along 69 % of the genome), and thus represents a novel Xanthomonas phage. Xoo-sp2 significantly inhibited Xoo growth in liquid culture. An experiment with potted plants indicated that Xoo-sp2 could efficiently control BLB in living rice. In summary, our work characterized a novel Xanthomonas phage and demonstrated its potential as a prophylactic agent in the control of BLB in rice.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Xanthomonas/virologia , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , DNA/química , DNA/genética , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Anotação de Sequência Molecular , Fases de Leitura Aberta , Oryza/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Homologia de Sequência , Siphoviridae/genética , Siphoviridae/crescimento & desenvolvimento , Microbiologia do Solo , Xanthomonas/crescimento & desenvolvimento
12.
Sci Rep ; 8(1): 4486, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540765

RESUMO

Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome. Codon usage analysis revealed a propensity for the phage encoded tRNAs to target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes and seven additional translation-related genes as well as a chaperonin gene found in the XacN1 genome suggests a relative independence of phage replication on host molecular machinery, leading to a prediction of a wide host range for this jumbo phage. We confirmed the prediction by showing a wider host range of XacN1 than other X. citri phages in an infection test against a panel of host strains. Phylogenetic analyses revealed a clade of phages composed of XacN1 and ten other jumbo phages, indicating an evolutionary stable large genome size for this group of phages.


Assuntos
Bacteriófagos/fisiologia , Genes Virais , Especificidade de Hospedeiro , RNA de Transferência/genética , Xanthomonas/virologia , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , Genoma Viral , Genômica/métodos , Interações Hospedeiro-Patógeno , Filogenia , Biossíntese de Proteínas , Proteômica/métodos , Sequências Repetidas Terminais , Replicação Viral
13.
Arch Virol ; 162(2): 567-572, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743252

RESUMO

Unlike Ff-like coliphages, certain filamentous Inoviridae phages integrate their genomes into the host chromosome and enter a prophage state in their infectious cycle. This lysogenic life cycle was first reported for Xanthomonas citri Cf phage. However, except for the X. citri phages Cf and XacF1, complete genome sequence information about lysogenic Xanthomonas phages is not available to date. A proviral sequence of Xf109 phage was identified in the genome of Xanthomonas oryzae, the rice bacterial blight pathogen, and revived as infectious virions to lysogenize its host de novo. The genome of Xf109 phage is 7190 nucleotides in size and contains 12 predicted open reading frames in an organization similar to that of the Cf phage genome. Seven of the Xf109 proteins show significant sequence similarity to Cf and XacF1 phage proteins, while its ORF4 shares 92 % identity with the major coat protein of X. phage oryzae Xf. Integration of Xf109 phage DNA into the host genome is site-specific, and the attP/attB sequence contains the dif core sequence 5'-TATACATTATGCGAA-3', which is identical to that of Cf, XacF1, and Xanthomonas campestris phage ϕLf. To my knowledge, this is the first complete genome sequence of a filamentous bacteriophage that infects X. oryzae.


Assuntos
Cromossomos Bacterianos/química , DNA Viral/genética , Genoma Viral , Inovirus/genética , Mutagênese Insercional , Xanthomonas/virologia , Sequência de Bases , Proteínas do Capsídeo/genética , Mapeamento Cromossômico , Expressão Gênica , Inovirus/isolamento & purificação , Lisogenia , Fases de Leitura Aberta , Oryza/microbiologia , Alinhamento de Sequência , Vírion/genética
14.
J Mol Biol ; 428(20): 3911-3919, 2016 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-27515396

RESUMO

The σ factor is a functionally obligatory subunit of the bacterial transcription machinery, the RNA polymerase. Bacteriophage-encoded small proteins that either modulate or inhibit the bacterial RNAP to allow the temporal regulation of bacteriophage gene expression often target the activity of the major bacterial σ factor, σ70. Previously, we showed that during Xanthomonas oryzae phage Xp10 infection, the phage protein P7 inhibits the host RNAP by preventing the productive engagement with the promoter and simultaneously displaces the σ70 factor from the RNAP. In this study, we demonstrate that P7 also inhibits the productive engagement of the bacterial RNAP containing the major variant bacterial σ factor, σ54, with its cognate promoter. The results suggest for the first time that the major variant form of the host RNAP can also be targeted by bacteriophage-encoded transcription regulatory proteins. Since the major and major variant σ factor interacting surfaces in the RNAP substantially overlap, but different regions of σ70 and σ54 are used for binding to the RNAP, our results further underscore the importance of the σ-RNAP interface in bacterial RNAP function and regulation and potentially for intervention by antibacterials.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Bacteriófagos/crescimento & desenvolvimento , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Interações Hospedeiro-Parasita , Transcrição Gênica , Proteínas Virais/metabolismo , Xanthomonas/virologia , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/metabolismo , Xanthomonas/genética
15.
Infect Genet Evol ; 43: 371-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27275846

RESUMO

Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most frequent infective diseases of walnut, resulting in serious economic losses. One potential solution to control this disease could be the application of bacteriophages. In this study, 24 phages were isolated from soil and walnut aerial tissues infected with Xaj. Two polyvalent bacteriophages, Xaj2 and Xaj24 were chosen for further characterization including their morphological, physiological and genomic analyses. Xaj2 was classified as Siphoviridae whereas Xaj24 belonged to the Podoviridae family. Both phages demonstrated lytic effect on Xaj in laboratory trials. Complete genomes of Xaj2 and Xaj24 were determined. Genomes of Xaj2 and Xaj24 consisted of 49.241 and 44.861 nucleotides encoding 80 and 53 genes, respectively. Comparative genome analyses have revealed that Xaj2 had a unique genome sequence, while Xaj24 was a phiKMV-like phage and it was most similar to the Prado phage which is virulent for Xylella fastidiosa and Xanthomonas spp. In this study, we present the first two complete Xaj phage sequences enabling an insight into the genomics of Xaj phages.


Assuntos
Genoma Viral , Filogenia , Podoviridae/genética , Siphoviridae/genética , Microbiologia do Solo , Xanthomonas/virologia , Agentes de Controle Biológico , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Juglans/microbiologia , Lisogenia/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Podoviridae/classificação , Podoviridae/isolamento & purificação , Podoviridae/patogenicidade , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Siphoviridae/patogenicidade , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/patogenicidade
16.
Proc Natl Acad Sci U S A ; 112(7): 2017-22, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646468

RESUMO

Transcription antitermination is a common strategy of gene expression regulation, but only a few transcription antitermination factors have been studied in detail. Here, we dissect the transcription antitermination mechanism of Xanthomonas oryzae virus Xp10 protein p7, which binds host RNA polymerase (RNAP) and regulates both transcription initiation and termination. We show that p7 suppresses intrinsic termination by decreasing RNAP pausing and increasing the transcription complex stability, in cooperation with host-encoded factor NusA. Uniquely, the antitermination activity of p7 depends on the ω subunit of the RNAP core and is modulated by ppGpp. In contrast, the inhibition of transcription initiation by p7 does not require ω but depends on other RNAP sites. Our results suggest that p7, a bifunctional transcription factor, uses distinct mechanisms to control different steps of transcription. We propose that regulatory functions of the ω subunit revealed by our analysis may extend to its homologs in eukaryotic RNAPs.


Assuntos
Bacteriófagos/genética , DNA Polimerase Dirigida por DNA/metabolismo , Regiões Terminadoras Genéticas , Xanthomonas/virologia
17.
J Microbiol Biotechnol ; 24(6): 740-7, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24651644

RESUMO

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.


Assuntos
Bacteriófagos/isolamento & purificação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Xanthomonas/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Biodiversidade , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/prevenção & controle , Xanthomonas/fisiologia
18.
J Bacteriol ; 196(2): 459-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214944

RESUMO

The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Xanthomonas/virologia , Xylella/virologia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , DNA Viral/química , DNA Viral/genética , Genes Virais , Genoma Viral , Especificidade de Hospedeiro , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Podoviridae/genética , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Podoviridae/ultraestrutura , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Siphoviridae/ultraestrutura , Sintenia , Ligação Viral
19.
World J Microbiol Biotechnol ; 28(5): 1917-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22806014

RESUMO

Walnut orchards suffer from a blight caused by the bacteria Xanthomonas arboricola pv. juglandis. These bacteria can be infected by viral bacteriophages and this study was carried out to isolate and characterize bacteriophages from walnut orchards located throughout the South Island of New Zealand. Twenty six X. arboricola phages were isolated from three hundred and twenty six samples of plant material representing phyllosphere and rhizosphere ecosystems. The phage isolates were characterized by host-range, plaque and particle morphology, restriction digest and phylogenetic analysis and stability under various storage conditions. From capsid and tail dimensions the bacteriophages were considered to belong to the double-stranded DNA families Podoviridae and Siphoviridae. Of the twenty six bacteriophages, sixteen belonged to Podoviridae and were found both in the phyllosphere and rhizosphere. In contrast, Siphoviridae were present only in the rhizosphere isolates. Phage genome sizes ranged from 38.0 to 52.0 kb from a Hind III restriction digestion and had in common a 400 kb fragment that was identical at the DNA level. Despite the similar restriction patterns, maximum parsimony bootstrap analysis showed that the phage were members of different groups. Finally, we hypothesise that these phage might have use in a biocontrol strategy and therefore storage stability and efficacy was tested. Titres declined more than 50% over a 12-months storage period. Deep-freezing temperatures (-34°C) increased while chloroform decreased the stability.


Assuntos
Bacteriófagos/isolamento & purificação , Juglans/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Sequência de Bases , DNA Viral/genética , Especificidade de Hospedeiro , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Nova Zelândia , Folhas de Planta/virologia , Raízes de Plantas/virologia , Podoviridae/ultraestrutura , Mapeamento por Restrição , Siphoviridae/ultraestrutura , Vírion/ultraestrutura , Xanthomonas/isolamento & purificação
20.
FEMS Microbiol Lett ; 296(1): 110-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19459963

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR) is a bacterial immunity system that requires a perfect sequence match between the CRISPR cassette spacer and a protospacer in invading DNA for exclusion of foreign genetic elements. CRISPR cassettes are hypervariable, possibly reflecting different exposure of strains of the same species to foreign genetic elements. Here, we determined CRISPR cassette sequences of two Xanthomonas oryzae strains and found that one of the strains remains sensitive to phage Xop411 despite carrying a cassette that has a spacer exactly matching a fragment of the Xop411 genome. To explain this apparent paradox, we identified X. oryzae CRISPR spacers of likely phage origin and defined a consensus sequence of a motif adjacent to X. oryzae phage protospacers. Our analysis revealed that the Xop411 protospacer that matches the CRISPR spacer has this motif mutated, which likely explains the phage's ability to infect its host. While similar observations were made previously with Streptococcus thermophilus and its phages, the conserved motif in X. oryzae phages is located on a protospacer side opposite to the S. thermophilus phages' motif. The results thus point to a considerable degree of variety of CRISPR-mediated phage resistance mechanisms in different bacteria.


Assuntos
DNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico , Xanthomonas/genética , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , DNA Bacteriano/química , Ordem dos Genes , Variação Genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Xanthomonas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...