Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioorg Chem ; 111: 104906, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894434

RESUMO

A novel ß-xylosidase Dt-2286 from Dictyoglomus turgidum was cloned and overexpressed in Escherichia coli BL21 (DE3). Dt-2286 belonging to glycoside hydrolase (GH) family 3 encodes a polypeptide with 762 amino acid residues with a molecular weight of 85.1 kDa. By optimization of the growth and induction conditions, the activity of ß-xylosidase reached 273 U/mL, which is the highest yield reported to date from E. coli in a shake-flask. The optimal activities of the purified Dt-2286 were found at pH 5.0 and 98 °C. It also shows excellent thermostable/haloduric/organic solvent-tolerance. Dt-2286 was revealed to be a multifunctional enzyme with ß-xylosidase, α-arabinofuranoside, α-arabinopyranoside and ß-glucosidase activities, and Kcat/Km was 5245.316 mM-1 s-1, 2077.353 mM-1 s-1, 1626.454 mM-1 s-1, and 470.432 mM-1 s-1 respectively. Dt-2286 showed significant synergistic effects on the degradation of xylans, releasing more reduced sugars (up to 15.08 fold) by simultaneous addition with endoxylanase. Moreover, this enzyme has good activity in the hydrolysis of epimedium B, demonstrating its versatility in practical applications.


Assuntos
Bactérias/enzimologia , Escherichia coli/metabolismo , Glicosídeo Hidrolases/biossíntese , Xilosidases/biossíntese , beta-Glucosidase/biossíntese
2.
Braz. arch. biol. technol ; 63: e20170710, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132254

RESUMO

Abstract (1) Background: The aim of this study was to evaluate the production and partial characterization of xylanase and avicelase by a newly isolated Penicillium sp. in solid-state fermentation, using soybean hulls as substrate. (2) Methods: Temperature, time, number of spores, and substrate moisture on xylanase and avicelase bioproduction were evaluated, maximizing activity with 30°C, 1x106 spores/g substrate, 14 and 7 days of fermentation with 70 and 76% substrate moisture contents, for xylanase and avicelase, respectively. (3) Results: Different solvents, temperatures, and agitation in the enzymatic extraction were evaluated, obtaining higher activities, 430.77 and 26.77 U/g for xylanase and avicelase using 30 min extraction and 0.05 M citrate buffer solution (pH 4.5 ), respectively at 60°C and 175 rpm and 50°C and 125 rpm. The optimum pH and temperature for enzymatic activity determination were 5.3 and 50°C. Enzyme extract stability was evaluated, obtaining higher stability with pH between 4.5 and 5.5, higher temperature of up to 40°C. The kinetic thermal denaturation (Kd), half-life time, D-value, and Z-value were similar for both enzymes. The xylanase Ed value (89.1 kJ/mol) was slightly lower than the avicelase one (96.7 kJ/mol), indicating higher thermostability for avicelase. (4) Conclusion: In this way, the production of cellulases using alternative substrates is a way to reduce production costs, since they represent about 10% of the world demand of enzymes, with application in animal feed processing, food production and breweries, textile processing, detergent and laundry production, pulp manufacturing and the production of biofuels.


Assuntos
Penicillium/isolamento & purificação , Penicillium/enzimologia , Glycine max/microbiologia , Xilosidases/biossíntese , Celulases/biossíntese , Temperatura , Fatores de Tempo , Substratos para Tratamento Biológico
3.
Biotechnol Prog ; 35(6): e2872, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31215769

RESUMO

The aim of this study was to enhance the production of xylano-pectinolytic enzymes concurrently and also to reduce the fermentation period. In this study, the effect of agro-residues extract-based inoculum on yield and fermentation time of xylano-pectinolytic enzymes was studied. Microbial inoculum and fermentation media were supplemented with xylan and pectin polysaccharides derived from agro-based residues. Enzymes production parameters were optimized through two-stage statistical design approach. Under optimized conditions (temperature 37°C, pH 7.2, K2 HPO4 0.22%, MgSO4 0.1%, gram flour 5.6%, substrate: moisture ratio 1:2, inoculum size 20%, agro-based crude xylan in production media 0.45%, and agro-based crude xylan-pectin in inoculum 0.13%), nearly 28,255 ± 565 and 9,202 ± 193 IU of xylanase and pectinase, respectively, were obtained per gram of substrate in a time interval of 6 days only. The yield of both xylano-pectinolytic enzymes was enhanced along with a reduction of nearly 24 h in fermentation time in comparison with control, using polysaccharides extracted from agro-residues. The activity of different types of pectinase enzymes such as exo-polymethylgalacturonase (exo-PMG), endo-PMG, exo-polygalacturonase (exo-PG), endo-PG, pectin lyase, pectate lyase, and pectin esterase was obtained as 1,601, 12.13, 5637, 24.86, 118.62, 124.32, and 12.56 IU/g, respectively, and was nearly twofold higher than obtained for all seven types in control samples. This is the first report mentioning the methodology for enhanced production of xylano-pectinolytic enzymes in short solid-state fermentation cycle using agro-residues extract-based inoculum and production media.


Assuntos
Enzimas/biossíntese , Fermentação , Técnicas de Síntese em Fase Sólida , Xilosidases/biossíntese , Enzimas/química , Concentração de Íons de Hidrogênio , Pectinas/farmacologia , Poligalacturonase/biossíntese , Poligalacturonase/química , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/química , Temperatura , Xilanos/farmacologia , Xilosidases/química , Xilosidases/classificação
4.
Biotechnol Appl Biochem ; 66(4): 574-585, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31021011

RESUMO

Simultaneous production of alkaline xylanase and all seven types of pectinases by a bacterial isolate, under solid-state fermentation was checked in this study. Under optimized conditions, high concurrent production of xylanase (22,800 ± 578 IU/g substrate) and pectinase (4,832 ± 189 IU/g substrate) was achieved. The different types of pectinases produced were exo-polymethylgalacturonase (782 IU/g), endo-polymethylgalacturonase (6.42 U/g), exo-polygalacturonase (2,250 IU/g), endo-polygalacturonase (11.57 U/g), polymethylgalacturonate lyase (53.99 IU/g), polygalacturonate lyase (59.78 IU/g), and pectin esterase (5.78 IU/g). Wheat bran resulted in the highest titer of both enzymes. The maximum xylanase-pectinase yield was detected after 7 days of incubation with 2 mM MgSO4 and 1.5 g/L K2 HPO4 at wheat bran to moisture ratio 1:1.5 (w/v), media to flask volume ratio 1:25, pH 7.0, temperature 37 °C, and inoculum size 15%. Xylanase was most stable at pH 8.0, retained more than 75% activity up to 24 H, whereas pectinase was most stable at pH 9.0, having full activity even after 24 H. At 45 °C, the xylanase showed 82% residual activity after 6 H of incubation. The pectinase was 97% and 61% stable up to 3 H at 50 and 55 °C, respectively. This is the first report showing the production of xylanase-pectinases by bacterium along with high titer of seven types of pectinases, suitable for industries.


Assuntos
Aspergillus/metabolismo , Fermentação , Microbiologia Industrial/economia , Poligalacturonase/biossíntese , Xilosidases/biossíntese
5.
Molecules ; 24(4)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30781572

RESUMO

Integrated enzyme production in the biorefinery can significantly reduce the cost of the entire process. The purpose of the present study is to evaluate the production of two hydrolyzing enzymes (amylase and xylanase) by an edible fungus used in the biorefinery, Neurospora intermedia. The enzyme production was explored through submerged fermentation of synthetic media and a wheat-based waste stream (thin stillage and wheat bran). The influence of a nitrogen source on N. intermedia was investigated and a combination of NaNO3 and yeast extract has been identified as the best nitrogen source for extracellular enzyme production. N. intermedia enzymes showed maximum activity at 65 °C and pH around 5. Under these conditions, the maximum velocity of amylase and xylanase for starch and xylan hydrolysis was found to be 3.25 U mL-1 and 14.77 U mL-1, respectively. Cultivation of N. intermedia in thin stillage and wheat bran medium resulted in relatively high amylase (8.86 ± 0.41 U mL-1, 4.68 ± 0.23) and xylanase (5.48 ± 0.21, 2.58 ± 0.07 U mL-1) production, respectively, which makes this fungus promising for enzyme production through a wheat-based biorefinery.


Assuntos
Amilases/biossíntese , Amilases/química , Neurospora/enzimologia , Xilosidases/biossíntese , Xilosidases/química , Ativação Enzimática , Etanol/metabolismo , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nitrogênio/metabolismo , Amido/química , Temperatura , Triticum/química , Triticum/metabolismo , Xilanos/química
6.
Enzyme Microb Technol ; 122: 90-100, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638513

RESUMO

The aim of this study is to enhance the production of industrially valuable xylanase and pectinase enzymes in short duration, using agrowaste extracted substrates. Conventional cum statistical multifactor analysis approaches were used in order to evaluate the effect of crude extracted substrates, supplemented for the production of xylanase-pectinase enzymes. Incorporation of crude extracted xylan (1.2 mg/ml of inoculum) and pectin (4.8 mg/ml of inoculum) substrates in inoculum resulted in maximal xylanase (320 ± 15) and pectinase titre (90 ± 8) after 48 h, using 2% wheat bran and 2% citrus peel in production medium with 48 h of fermentation time, with one variable factor at a time approach. The best condition obtained after performing statistical multifactor interaction analysis includes 5.50 mg/ml of pectin in inoculum,1.50 mg/ml of xylan in inoculum, wheat bran 3%, temperature 37.5 °C, time 48 h, 7 mg/ml of pectin in production medium, peptone 1.05%, inoculum size 2% and inoculum age of 20 h, with alkaline xylanase activity of 415.22 ± 18.50 IU/ml and alkaline pectinase activity of 109.10 ± 8.80 IU/ml. Activity of different pectinolytic enzymes per ml was also calculated, with 18.98 IU of exo-polymethylgalacturonase, 0.14 IU of endo-polymethylgalacturonase, 80 IU of exo-polygalacturonase, 0.28 IU of endo-polygalacturonase, 1.42 IU of polymethylgalacturonate lyase, 1.47 IU of polygalacturonate lyase, 0.15 IU of pectin esterase. This is the first report mentioning the utilization of crude extracted xylan and extracted pectin in inoculum to get the increment in the activity of both alkaline xylanase-pectinase enzymes simultaneously under short submerged fermentation cycle.


Assuntos
Microbiologia Industrial/métodos , Resíduos Industriais , Poligalacturonase/biossíntese , Xilosidases/biossíntese , Agricultura , Bacillus pumilus/enzimologia , Bacillus pumilus/metabolismo , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Modelos Teóricos , Pectinas/metabolismo , Temperatura , Fatores de Tempo , Xilanos/metabolismo
7.
J Basic Microbiol ; 59(1): 101-110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30303547

RESUMO

Anaerobic fungi colonize the rumen and degrade cellulose and hemicellulose, which enable them to be key players in the lignocellulose fermentation. Consequently, an expansion of knowledge about rumen fungi could increase animal productivity, utilization of lignified forages like alfalfa hay, and enhance fibrolytic enzymes production. Here, we used an Internal Transcribed Spacer 1 (ITS1) clone library to investigate the anaerobic rumen fungi in camel and to investigate their ability to produce cellulase and xylanase in vitro. Rumen fluid was collected from camels fed Egyptian clover (n = 14), and wheat straw (n = 7) and fecal samples were collected from camels fed wheat straw and concentrates (n = 5), or natural grazing plants (n = 10). Neocallimastix and Cyllamyces were the most abundant anaerobic fungi in all camel groups. An anaerobic rumen fungi media containing alfalfa hay as a carbon source was inoculated by rumen and fecal samples to assess the ability of anaerobic rumen fungi in camel gut to produce cellulase and xylanase. The anaerobic gut fungi in the camel is diverse and has cellulolytic and xylanolytic activities, fungal culture from rumen samples of camel fed wheat straw (R2) exhibited highest cellulase production. In addition, many of the sequences in the current study have no equivalent cultured representative, indicating a novel diversity within the camel gut.


Assuntos
Camelus/microbiologia , Fibras na Dieta/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Microbiota , Rúmen/microbiologia , Ração Animal/microbiologia , Animais , Biodiversidade , Celulase/metabolismo , Celulose/biossíntese , DNA Fúngico/análise , Egito , Fezes/microbiologia , Fermentação , Fungos/classificação , Fungos/genética , Lignina/metabolismo , Masculino , Medicago sativa , Filogenia , Polissacarídeos/metabolismo , Análise de Sequência de DNA , Triticum , Xilosidases/biossíntese
8.
BMC Biotechnol ; 18(1): 42, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945583

RESUMO

BACKGROUND: Consolidated bioprocessing (CBP) is a cost-effective approach for the conversion of lignocellulosic biomass to biofuels and biochemicals. The enzymatic conversion of cellulose to glucose requires the synergistic action of three types of enzymes: exoglucanases, endoglucanases and ß-glucosidases. The thermophilic, hemicellulolytic Geobacillus thermodenitrificans T12 was shown to harbor desired features for CBP, although it lacks the desired endo and exoglucanases required for the conversion of cellulose. Here, we report the expression of both endoglucanase and exoglucanase encoding genes by G. thermodenitrificans T12, in an initial attempt to express cellulolytic enzymes that complement the enzymatic machinery of this strain. RESULTS: A metagenome screen was performed on 73 G. thermodenitrificans strains using HMM profiles of all known CAZy families that contain endo and/or exoglucanases. Two putative endoglucanases, GE39 and GE40, belonging to glucoside hydrolase family 5 (GH5) were isolated and expressed in both E. coli and G. thermodenitrificans T12. Structure modeling of GE39 revealed a folding similar to a GH5 exo-1,3-ß-glucanase from S. cerevisiae. However, we determined GE39 to be a ß-xylosidase having pronounced activity towards p-nitrophenyl-ß-D-xylopyranoside. Structure modelling of GE40 revealed its protein architecture to be similar to a GH5 endoglucanase from B. halodurans, and its endoglucanase activity was confirmed by enzymatic activity against 2-hydroxyethylcellulose, carboxymethylcellulose and barley ß-glucan. Additionally, we introduced expression constructs into T12 containing Geobacillus sp. 70PC53 endoglucanase gene celA and both endoglucanase genes (M1 and M2) from Geobacillus sp. WSUCF1. Finally, we introduced expression constructs into T12 containing the C. thermocellum exoglucanases celK and celS genes and the endoglucanase celC gene. CONCLUSIONS: We identified a novel G. thermodenitrificans ß-xylosidase (GE39) and a novel endoglucanase (GE40) using a metagenome screen based on multiple HMM profiles. We successfully expressed both genes in E. coli and functionally expressed the GE40 endoglucanase in G. thermodenitrificans T12. Additionally, the heterologous production of active CelK, a C. thermocellum derived exoglucanase, and CelA, a Geobacillus derived endoglucanase, was demonstrated with strain T12. The native hemicellulolytic activity and the heterologous cellulolytic activity described in this research provide a good basis for the further development of G. thermodenitrificans T12 as a host for consolidated bioprocessing.


Assuntos
Celulase/genética , Escherichia coli/genética , Geobacillus/enzimologia , Geobacillus/genética , Xilosidases/genética , Celulase/biossíntese , Engenharia Genética , Xilosidases/biossíntese
9.
Appl Microbiol Biotechnol ; 102(16): 6959-6971, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29876606

RESUMO

Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 ß-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose. In this work, the structural and functional properties of ß-xylosidase EcXyl43 from Enterobacter sp. were thoroughly characterized. Molecular modeling suggested a 3D structure formed by a conserved N-terminal catalytic domain linked to an ancillary C-terminal domain. Both domains resulted essential for enzymatic activity, and the role of critical residues, from the catalytic and the ancillary modules, was confirmed by mutagenesis. EcXyl43 presented ß-xylosidase activity towards natural and artificial substrates while arabinofuranosidase activity was only detected on nitrophenyl α-L-arabinofuranoside (pNPA). It hydrolyzed xylobiose and purified xylooligosaccharides (XOS), up to degree of polymerization 6, with higher activity towards longer XOS. Low levels of activity on commercial xylan were also observed, mainly on the soluble fraction. The addition of EcXyl43 to GH10 and GH11 endoxylanases increased the release of xylose from xylan and pre-treated wheat straw. Additionally, EcXyl43 exhibited high efficiency and thermal stability under its optimal conditions (40 °C, pH 6.5), with a half-life of 58 h. Therefore, this enzyme could be a suitable additive for hemicellulases in long-term hydrolysis reactions. Because of its moderate inhibition by monomeric sugars but its high inhibition by ethanol, EcXyl43 could be particularly more useful in separate hydrolysis and fermentation (SHF) than in simultaneous saccharification and co-fermentation (SSCF) or consolidated bioprocessing (CBP).


Assuntos
Enterobacter/enzimologia , Xilosidases/química , Xilosidases/classificação , Sequência de Aminoácidos , Biomassa , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Fermentação , Hidrólise , Lignina/metabolismo , Modelos Moleculares , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Triticum/metabolismo , Xilosidases/biossíntese , Xilosidases/genética
10.
Appl Biochem Biotechnol ; 186(4): 816-833, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29740799

RESUMO

Two new endo-1,4-beta-xylanases encoding genes EpXyn1 and EpXyn3 were isolated from mesophilic fungus Eupenicillium parvum 4-14. Based on analysis of catalytic domain and phylogenetic trees, the xylanases EpXYN1 (404 aa) and EpXYN3 (220 aa) belong to glycoside hydrolase (GH) family 10 and 11, respectively. Both EpXYN1 and EpXYN3 were successfully expressed in Pichia pastoris and the recombinant enzymes were characterized using beechwood xylan, birchwood xylan, or oat spelt xylan as substrates, respectively. The optimum temperatures and pH values were 75 °C and 5.5 for EpXYN1, and 55 °C and 5.0 for EpXYN3. EpXYN1 exhibited a high stability at high temperature (65 °C) or at pH values from 8 to 10. EpXYN3 kept over 80% enzymatic activity after treatment at pH values from 3 to 10. The specific activities of EpXYN1 and EpXYN3 were 384.42 and 214.20 U/mg using beechwood xylan as substrate, respectively. EpXYN1 showed lower Km values and higher specific activities toward different xylans compared to EpXYN3. Thin-layer chromatography analysis indicated that the hydrolysis profiles of xylans or xylo-oligosacharides were different by EpXYN1and EpXYN3. EpXYN3 had a higher efficiency than EpXYN1 in production of feruloylated oligosaccharides (FOs) from de-starched wheat bran. The maximum levels of FOs released by EpXYN1 and EpXYN3 were 11.1 and 14.4 µmol/g, respectively. In conclusion, the two xylanases are potential candidates for various industrial applications.


Assuntos
Eupenicillium/genética , Proteínas Fúngicas/química , Oligossacarídeos/química , Xilanos/química , Xilosidases/química , Avena/química , Fibras na Dieta , Eupenicillium/enzimologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Xilosidases/biossíntese , Xilosidases/genética
11.
BMC Biotechnol ; 18(1): 29, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783967

RESUMO

BACKGROUND: ß-D-xylosidase is a vital exoglycosidase with the ability to hydrolyze xylooligosaccharides to xylose and to biotransform some saponins by cleaving outer ß-xylose. ß-D-xylosidase is widely used as one of the xylanolytic enzymes in a diverse range of applications, such as fuel, food and the pharmaceutical industry; therefore, more and more studies have focused on the thermostable and xylose-tolerant ß-D-xylosidases. RESULTS: A thermostable ß-xylosidase gene (xln-DT) of 1509 bp was cloned from Dictyoglomus thermophilum and expressed in E.coli BL21. According to the amino acid and phylogeny analyses, the ß-xylosidase Xln-DT is a novel ß-xylosidase of the GH family 39. The recombinant ß-xylosidase was purified, showing unique bands on SDS-PAGE, and had a protein molecular weight of 58.7 kDa. The ß-xylosidase Xln-DT showed an optimal activity at pH 6.0 and 75 °C, with p-nitrophenyl-ß-D-xylopyranoside (pNPX) as a substrate. Xln-DT displayed stability over a pH range of 4.0-7.5 for 24 h and displayed thermotolerance below 85 °C. The values of the kinetic parameters K m and V max for pNPX were 1.66 mM and 78.46 U/mg, respectively. In particular, Xln-DT displayed high tolerance to xylose, with 60% activity in the presence of 3 M xylose. Xln-DT showed significant effects on the hydrolyzation of xylobiose. After 3 h, all the xylobiose tested was degraded into xylose. Moreover, ß-xylosidase Xln-DT had a high selectivity for cleaving the outer xylose moieties of natural saponins, such as notoginsenoside R1 and astragaloside IV, which produced the ginsenoside Rg1 with stronger anti-fatigue activity and produced cycloastragenol with stronger anti-aging activity, respectively. CONCLUSION: This study provides a novel GH 39 ß-xylosidase displaying extraordinary properties of highly catalytic activity at temperatures above 75 °C, remarkable hydrolyzing activity of xylooligosaccharides and rare saponins producing ability in the pharmaceutical and commercial industries.


Assuntos
Proteínas de Bactérias/química , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Xilosidases/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Xilose/metabolismo , Xilosidases/biossíntese , Xilosidases/genética
12.
Appl Biochem Biotechnol ; 186(3): 712-730, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29728961

RESUMO

A locally isolated strain of Aspergillus niger van Tieghem was found to produce thermostable ß-xylosidase activity. The enzyme was purified by cation and anion exchange and hydrophobic interaction chromatography. Maximum activity was observed at 70-75 °C and pH 4.5. The enzyme was found to be thermostable retaining 91 and 87% of its original activity after incubation for 72 h at 60 and 65 °C, respectively, with 52% residual activity detected after 18 h at 70 °C. Available data indicates that the purified ß-xylosidase is more thermostable over industrially relevant prolonged periods at high temperature than those reported from other A. niger strains. Maximum activity was observed on p-nitrophenyl-ß-D-xylopyranoside and the enzyme also hydrolysed p-nitrophenyl ß-D-glucopyranoside and p-nitrophenyl α-L-arabinofuranoside. The purified enzyme acted synergistically with A. niger endo-1,4-ß-xylanase in the hydrolysis of beechwood xylan at 65 °C. During hydrolysis of pretreated straw lignocellulose at 70 °C using a commercial lignocellulosic enzyme cocktail, inclusion of the purified enzyme resulted in a 19-fold increase in the amount of xylose produced after 6 h. The results observed indicate potential suitability for industrial application in the production of lignocellulosic bioethanol where thermostable ß-xylosidase activity is of growing interest to maximise the enzymatic hydrolysis of lignocellulose.


Assuntos
Aspergillus niger/enzimologia , Etanol/metabolismo , Lignina/metabolismo , Xilosidases/isolamento & purificação , Xilosidases/metabolismo , Resinas de Troca Aniônica , Biotecnologia , Resinas de Troca de Cátion , Cromatografia por Troca Iônica/métodos , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Especificidade por Substrato , Xilanos/metabolismo , Xilosidases/biossíntese
13.
Folia Microbiol (Praha) ; 63(4): 467-478, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29423709

RESUMO

Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, ß-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, ß-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and ß-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Reatores Biológicos/microbiologia , Celulases/biossíntese , Técnicas de Cocultura , Microbiologia Industrial/métodos , Ascomicetos/enzimologia , Ascomicetos/isolamento & purificação , Aspergillus niger/enzimologia , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/isolamento & purificação , Aspergillus niger/metabolismo , Biomassa , Celulases/metabolismo , Celulose/metabolismo , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Fusarium/crescimento & desenvolvimento , Fusarium/isolamento & purificação , Fusarium/metabolismo , Interações Microbianas/fisiologia , Trichoderma/enzimologia , Trichoderma/crescimento & desenvolvimento , Trichoderma/isolamento & purificação , Trichoderma/metabolismo , Xilosidases/biossíntese , Xilosidases/metabolismo
14.
J Basic Microbiol ; 58(2): 144-153, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29193198

RESUMO

Humicola grisea var. thermoidea (Hgvt) is a thermophilic ascomycete that produces lignocellulolytic enzymes and it is proposed for the conversion of agricultural residues into useful byproducts. Drugs that inhibit the DNA methyltransferases (DNMTs) activity are employed in epigenetic studies but nothing is known about a possible effect on the production of fungal enzymes. We evaluated the effect of 5-aza-2'-deoxycytidine (5-Aza; a chemical inhibitor of DNMTs activity) on the secreted enzyme activity and on the transcription of cellulase and xylanase genes from Hgvt grown in agricultural residues and in glucose. Upon cultivation on wheat bran (WB), the drug provoked an increase in the xylanase activity at 96 h. When Hgvt was grown in glucose (GLU), a repressor of Hgvt glycosyl hydrolase genes, 5-Aza led to increased transcript accumulation for the cellobiohydrolases and for the xyn2 xylanase genes. In WB, 5-Aza enhanced the expression of the transcription factor CreA gene. Growth on WB or GLU, in presence of 5-Aza, led to a significant increase in transcripts of the pH-response regulator PacC gene. To our knowledge, this is the first report on the effect of a DNMT inhibitor in the production of fungal plant cell wall degradation enzymes.


Assuntos
Azacitidina/análogos & derivados , Repressão Catabólica/efeitos dos fármacos , Celulase/biossíntese , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Sordariales/efeitos dos fármacos , Xilosidases/biossíntese , Azacitidina/metabolismo , Decitabina , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Sordariales/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/microbiologia
15.
Sheng Wu Gong Cheng Xue Bao ; 33(5): 785-795, 2017 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-28876033

RESUMO

ß-xylosidase (EC 3.2.1.37) is an important part of the xylanolytic enzymes system. In the present research, ß-xylosidase gene Sxa derived from Selenomonas ruminantium was expressed in Pichia pastoris GS115. According to the codon bias and rare codons of P. pastoris, mRNA secondary structure and GC content, Sxa gene was optimized. The optimized full-length gene mSxa was obtained by gene synthesis technique and the recombinant yeast expression vector pPIC9K-mSxa was constructed. After being digested by restriction enzyme BglⅡ, the mSxa gene was transformed into P. pastoris GS115. Then, phenotype and geneticin G418 resistance screening, and PCR were adopted to identify the positive transformants. Finally, the recombinant P. pastoris GS115-pPIC9K-mSxa was obtained. Based on enzymatic activity assay, a high-level expression clone was picked up and then the enzymatic characteristics of the recombinant ß-xylosidase were studied. The results showed that the molecular weight of the mSxa expressed in P. pastoris G115 was about 66 kDa. The maximum activity was achieved 287.61 IU/mL at fermenter level. Enzymatic characterization showed the ß-xylosidase was stable between 40 ℃ and 60 ℃, and pH between 5.0 and 7.0. The optimal reaction temperature and pH were 55 ℃ and 6.0, and preferentially degrading the ß-xylose glycosidic bond. The enzymatic activity was activated by Mn²âº and Ca²âº, and inhibited by Fe³âº, Cu²âº, Co²âº, Mg²âº, EDTA and SDS. The study indicates that the modified ß-xylosidase gene mSxa from Selenomonas ruminantium can express successfully with high activity in P. pastoris. The study lays a foundation for further industrial application of the ß-xylosidase.


Assuntos
Proteínas de Bactérias/biossíntese , Selenomonas/enzimologia , Xilosidases/biossíntese , Proteínas de Bactérias/genética , Microbiologia Industrial , Pichia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Selenomonas/genética , Xilosidases/genética
16.
World J Microbiol Biotechnol ; 32(11): 186, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27655529

RESUMO

On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of ß-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high ß-xylosidase dominance. ß-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 ß-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.


Assuntos
Trichoderma/isolamento & purificação , Xilose/metabolismo , Xilosidases/biossíntese , Biomassa , Meios de Cultura , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo , Hidrólise , Oryza/microbiologia , Especificidade por Substrato , Trichoderma/enzimologia , Trichoderma/crescimento & desenvolvimento , Xilosidases/metabolismo
17.
Acta Biochim Pol ; 63(3): 581-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382647

RESUMO

As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/biossíntese , Geobacillus/enzimologia , Amilases/biossíntese , Amilases/química , Bacillus/genética , Proteínas de Bactérias/química , Celulase/biossíntese , Celulase/química , Endopeptidases/biossíntese , Endopeptidases/química , Estabilidade Enzimática , Geobacillus/genética , Fontes Termais/microbiologia , Temperatura Alta , Tipagem Molecular , Filogenia , RNA Ribossômico 16S , Tunísia , Microbiologia da Água , Xilosidases/biossíntese , Xilosidases/química
18.
Protein Expr Purif ; 124: 55-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27154901

RESUMO

ß-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. ß-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl ß-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a ß-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications.


Assuntos
Proteínas de Bactérias , Clonagem Molecular , Expressão Gênica , Metanol/química , Pichia/crescimento & desenvolvimento , Selenomonas , Xilosidases , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Pichia/genética , Selenomonas/enzimologia , Selenomonas/genética , Xilosidases/biossíntese , Xilosidases/genética
19.
Appl Biochem Biotechnol ; 179(7): 1143-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27008328

RESUMO

Efficient use of xylose along with glucose is necessary for the economic production of lignocellulosic based biofuels. Xylose transporters play an important role in the microorganisms for efficient utilization of xylose. In the present study, a novel method has been developed for a rapid assay of xylose transport activity in the xylose-utilizing isolates and other known yeasts. An assay was conducted to compare the activity of ß-xylosidase using p-nitrophenyl-ß-D-xylopyranoside (pNPX) in the intact, intracellular, and extracellular yeasts cells showing xylose transporter. Saccharomyces cerevisiae (MTCC 170) showed no xylosidase activity, while little growth was observed in the xylose-containing medium. Although other yeasts, i.e., Kluyveromyces marxianus NIRE-K1 (MTCC 5933), K. marxianus NIRE-K3 (MTCC 5934), and Candida tropicalis (MTCC 230), showed xylosidase activity in intact, intracellular, and extracellular culture. The xylosidase activity in intact cell was higher than that of extracellular and intracellular activity in all the yeast cells. The enzyme activity was higher in case of K. marxianus NIRE-K1 and K. marxianus NIRE-K3 rather than the C. tropicalis. Further, better xylosidase activity was observed in adapted K. marxianus cells which were 2.79-28.46 % higher than that of native (non-adapted) strains, which indicates the significant improvement in xylose transportation.


Assuntos
Biocombustíveis , Lignina/química , Xilosidases/química , Candida/enzimologia , Estabilidade Enzimática , Kluyveromyces/enzimologia , Lignina/biossíntese , Saccharomyces cerevisiae/enzimologia , Temperatura , Xilosidases/biossíntese , Xilosidases/genética
20.
Microb Cell Fact ; 15: 28, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846788

RESUMO

BACKGROUND: Actinomycetes are saprophytic soil bacteria, and a rich source of industrial enzymes. While some of these enzymes can be produced using well-characterized production platforms such as Escherichia coli or Bacillus subtilis, Streptomyces lividans may be the preferred host for proper folding and efficient secretion of active enzymes. A combination of promoters, signal peptides and hosts were tested in order to obtain the best protein expression in this actinomycete. The xylanase, Xys1, from S. halstedii, the α-amylase, Amy, from S. griseus and the small laccase, SLAC, from S. coelicolor were used as reporters. RESULTS: The promoters xysAp from S. halstedii JM8 and pstSp from S. lividans were the most efficient among those tested. An improvement of 17 % was obtained in xylanase activity when the signal peptide of the α-amylase protein (Amy) of S. griseus IMRU3570 was used to direct its secretion. Enhanced expression of SsgA, a protein that plays a role in processes that require cell-wall remodelling, resulted in a improvement of 40 and 70 % of xylanase and amylase production, respectively. Deletion of genes SLI7232 and SLI4452 encoding putative repressors of xysAp provided improvement of production up to 70 % in the SLI7232 deletion strain. However, full derepression of this promoter activity was not obtained under the conditions assayed. CONCLUSIONS: Streptomyces lividans is a frequently used platform for industrial enzyme production and a rational strain-development approach delivered significant improvement of protein production by this host.


Assuntos
Amilases/biossíntese , Engenharia Genética/métodos , Streptomyces lividans/enzimologia , Xilosidases/biossíntese , Proteínas de Bactérias/metabolismo , Deleção de Genes , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...