Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.621
Filtrar
1.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832980

RESUMO

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Análise de Perigos e Pontos Críticos de Controle , Nanocompostos , Zearalenona , Zearalenona/análise , Análise de Perigos e Pontos Críticos de Controle/métodos , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Nanocompostos/química , Nanocompostos/normas , Eletrodos , Ouro/química , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
2.
Biosens Bioelectron ; 260: 116455, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824702

RESUMO

In this work, a potential-controlled electrochromic visual biosensor was developed for detecting zearalenone (ZEN) using a distance readout strategy. The sensor chip includes a square detection area and a folded signal output area created with laser etching technology. The detection area is modified with graphene oxide and ZEN aptamer, while Prussian blue (PB) is electrodeposited onto the signal output channel. When an appropriate voltage is applied, PB in the signal output area is reduced to colorless Prussian white (PW). The target ZEN molecules have the capability to release aptamers from graphene oxide (GO) surface in the detection area, resulting in a subsequent change in the potential of the visual signal output channel. This change determines the length of the channel that changes from blue to colorless, with the color change distance being proportional to the ZEN concentration. Using this distance readout strategy, ZEN detection within the range of 1 ng/mL to 300 ng/mL was achieved, with a detection limit of 0.29 ng/mL.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Limite de Detecção , Zearalenona , Zearalenona/análise , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Ferrocianetos/química , Colorimetria/instrumentação , Colorimetria/métodos
3.
Sci Rep ; 14(1): 13281, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858492

RESUMO

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and ß-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.


Assuntos
Apoptose , Proteína Forkhead Box O3 , Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/farmacologia , Linhagem Celular Tumoral , Zearalenona/farmacologia , Zearalenona/toxicidade , Zearalenona/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
4.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891908

RESUMO

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Assuntos
Citocinas , MAP Quinase Quinase Quinases , Atrofia Muscular , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/tratamento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Zearalenona/farmacologia , Zearalenona/análogos & derivados
5.
Toxins (Basel) ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38922147

RESUMO

Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.


Assuntos
Agentes de Controle Biológico , Triticum , Zearalenona , Zearalenona/metabolismo , Zearalenona/toxicidade , Triticum/microbiologia , Agentes de Controle Biológico/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Contaminação de Alimentos/prevenção & controle , Espectrometria de Massas em Tandem
6.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717261

RESUMO

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Assuntos
Glutationa Transferase , Larva , Locomoção , Tenebrio , Zearalenona , Animais , Tenebrio/efeitos dos fármacos , Tenebrio/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Zearalenona/toxicidade , Glutationa Transferase/metabolismo , Locomoção/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo
7.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773142

RESUMO

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Assuntos
Proteínas Reguladoras de Apoptose , Modelos Animais de Doenças , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Macrófagos , Sepse , Animais , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Fosforilação , Humanos , Ubiquitinação , Zearalenona/análogos & derivados , Zearalenona/farmacologia , Zearalenona/administração & dosagem , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Inflamação/metabolismo , Inflamação/patologia , Monoéster Fosfórico Hidrolases/metabolismo , Camundongos Knockout , Lactonas , Resorcinóis
8.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729049

RESUMO

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Assuntos
Técnicas Biossensoriais , Grão Comestível , Contaminação de Alimentos , Limite de Detecção , Microesferas , Micotoxinas , Zearalenona , Micotoxinas/análise , Grão Comestível/química , Grão Comestível/microbiologia , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Zearalenona/análise , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Aflatoxina B1/análise , Aflatoxina B1/isolamento & purificação , Tricotecenos/análise , Fitas Reagentes/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Corantes Fluorescentes/química
9.
Toxicon ; 243: 107743, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38701903

RESUMO

The estrogen-like mycotoxin zearalenone (ZEA) was popularly occurred in several food and feeds, posing threats to human and animal health. ZEA induced renal toxicity and caused oxidative stress. In the current study, the protecting effect of kefir administration against ZEA-induced renal damage in rats was explored. Rats were divided into 4 groups, each consisting of 5 animals. For the initial 7 days, they were orally administered sterile milk (200 µL/day). Subsequently, during the second week, the groups were exposed to kefir (200 µL/day), ZEA (40 mg/kg b.w./day) and a combination of kefir and ZEA. The biochemical parameters, kidney histological changes and ZEA residue were assessed. Kefir supplementation enhanced the antioxidant enzymes in the kidney, such as superoxide dismutase, catalase and glutathione peroxidase activities, which increased by 1.2, 4 and 20 folds, respectively, relative to the ZEA group. Remarkably, the concomitant administration kefir + ZEA suppressed ZEA residues in both serum and kidney. Additionally, serum levels of blood urea nitrogen, uric acid and renal malondialdehyde decreased by 22, 65 and 54%, respectively, in the kefir + ZEA group; while, the creatinine content increased by around 60%. Rats co-treated with kefir showed a normal kidney histological architecture contrary to tissues alterations mediated in the ZEA group. These results suggest that kefir may showed a protective effect on the kidneys, mitigating ZEA-induced acute toxicity in rats.


Assuntos
Kefir , Rim , Estresse Oxidativo , Ratos Wistar , Zearalenona , Animais , Zearalenona/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Feminino , Ratos , Rim/efeitos dos fármacos , Rim/patologia , Superóxido Dismutase/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Malondialdeído/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia
10.
J Agric Food Chem ; 72(23): 13371-13381, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809574

RESUMO

The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 µg of the enzyme against ZEN (5.0 µg/mL) and AFB1 (2.5 µg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.


Assuntos
Aflatoxina B1 , Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Lacase , Proteínas Recombinantes , Zearalenona , Lacase/genética , Lacase/metabolismo , Lacase/química , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Zearalenona/metabolismo , Zearalenona/química , Bacillus/enzimologia , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Concentração de Íons de Hidrogênio , Temperatura , Peso Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Álcalis/metabolismo , Álcalis/química
11.
Food Funct ; 15(11): 6042-6053, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38752441

RESUMO

Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin produced by Fusarium spp., contaminates cereals and threatens human and animal health by inducing hepatotoxicity, immunotoxicity, and genotoxicity. In this study, a new Bacillus subtilis strain, YQ-1, with a strong ability to detoxify ZEN, was isolated from soil samples and characterized. YQ-1 was confirmed to degrade more than 46.26% of 20 µg mL-1 ZEN in Luria-Bertani broth and 98.36% in fermentation broth within 16 h at 37 °C; one of the two resulting products was ZEN-diglucoside. Under optimal reaction conditions (50 °C and pH 5.0-9.0), the reaction mixture generated by YQ-1 catalyzing ZEN significantly reduced the promoting effect of ZEN on MCF-7 cell proliferation, effectively eliminating the estrogenic toxicity of ZEN. In addition, a new glycosyltransferase gene (yqgt) from B. subtilis YQ-1 was cloned with 98% similarity to Bs-YjiC from B. subtilis 168 and over-expressed in E. coli BL21 (DE3). ZEN glycosylation activity converted 25.63% of ZEN (20 µg mL-1) to ZEN-diG after 48 h of reaction at 37 °C. The characterization of ZEN degradation by B. subtilis YQ-1 and the expression of YQGT provide a theoretical basis for analyzing the mechanism by which Bacillus spp. degrades ZEN.


Assuntos
Bacillus subtilis , Glicosiltransferases , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Humanos , Glicosilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo
12.
Anal Chem ; 96(22): 9043-9050, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38774984

RESUMO

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes , Solventes , Zearalenona , Zearalenona/análise , Zearalenona/química , Solventes/química , Estilbenos/química , Limite de Detecção , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química
13.
Food Res Int ; 186: 114364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729726

RESUMO

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Assuntos
Contaminação de Alimentos , Triticum , Zearalenona , Zearalenona/análise , Triticum/química , Triticum/microbiologia , Contaminação de Alimentos/análise , Bacillus megaterium/enzimologia , Descontaminação/métodos , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Bacillus/enzimologia , Sementes/química , Sementes/microbiologia , Microscopia Eletrônica de Varredura
14.
Front Immunol ; 15: 1386780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756773

RESUMO

Introduction: Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods: Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results: Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion: Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.


Assuntos
Hemorragia Cerebral , MAP Quinase Quinase Quinases , Fator 2 Relacionado a NF-E2 , Neurônios , Estresse Oxidativo , Piroptose , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Lactonas , Resorcinóis , Zearalenona/administração & dosagem
15.
J Hazard Mater ; 472: 134321, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723478

RESUMO

It is challenging to prepare sample pretreatment materials with simple use, strong selectivity and satisfactory enrichment performance. In this study, the antibody (3D4) that can specifically recognize zearalenone (ZEN) and its metabolites was immobilized on the surface of gold-coated magnetic Fe3O4 nanoparticles (GMN) by streptavidin (SA)-biotin interaction using GMN as the substrate and our designed four-arm PEG derivative (HS-4ARMPEG10K-(CM)3) as the linker. The immunomagnetic nanoparticles (GMN-4ARMPEG10K-SA-3D4) prepared by this strategy can achieve rapid enrichment (only 5 min) of analytes directly in the matrix, and higher enrichment capacity compared with the previous immunomagnetic particles. The sensitive and accurate analysis of ZEN and its metabolites can be achieved coupled with HPLC-MS/MS. The LODs and LOQs were 0.02-0.05 µg/kg and 0.05-0.10 µg/kg, respectively. The recoveries were 84.13%-112.67%, and the RSDs were 1.09%-9.39%. The method can provide a powerful tool for highly sensitive and rapid monitoring of mycotoxins in complex matrices due to its' strong selectivity and resistance to matrix interference.


Assuntos
Polietilenoglicóis , Zearalenona , Zearalenona/química , Zearalenona/análise , Zearalenona/metabolismo , Polietilenoglicóis/química , Ouro/química , Separação Imunomagnética , Nanopartículas de Magnetita/química , Limite de Detecção , Anticorpos Imobilizados/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
16.
Food Res Int ; 187: 114389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763651

RESUMO

Ochratoxin A (OTA), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins whose exposure is associated with various adverse health effects, including cancer and renal disorders, estrogenic effects, and immunosuppressive and gastrointestinal disorders, respectively. Infants (<2 years) are the most vulnerable group to mycotoxins, representing a unique combination of restricted food consumption types, low body weight, lower ability to eliminate toxins, and more future years to accumulate toxins. This study aimed to estimate the infant́s exposure to OTA, DON, and ZEN due to the consumption of milk formula and baby cereals in Chile. Milk formula samples (n = 41) and baby cereals (n = 30) were collected and analyzed using commercial ELISA kits for OTA, DON, and ZEA determination. Exposure was assessed by the Estimated Daily Intake (EDI) approach (mean and worst-case scenario, WCS) with the levels found in a modified Lower Bound (mLB) and Upper Bound (UB); ideal consumption (<6m, 7-12 m, and 13-24 m); adjusted by the weight of each group. The risk was estimated by comparing the EDI with a reference tolerable daily intake or by the margin of exposure (MOE) in the case of OTA. DON and OTA occurrence in infant formula were 34 % and 41 %, respectively. The co-occurrence between these mycotoxins was 22 %. Mycotoxin contents were below LOQ values except for OTA determined in one sample (0.29 ng/ml). No milk formulae were contaminated with ZEN. In the case of baby cereals, the occurrences were 17 % for OTA, 30 % for DON, and 7 % for ZEN, all below LOQ. Co-occurrence was seen in two samples between ZEN and OTA. According to exposure calculations, the MOE for OTA was less than 10,000 in all models for milk formula between 0 to 12 months of age and in the UB and WCS for cereal consumption. Health concerns were observed for DON in the WCS and UB for milk consumption in all ages and only in the UB WCS for cereal consumption. Considering the high consumption of milk formula in these age groups, regulation of OTA and other co-occurring mycotoxins in infant milk and food is strongly suggested.


Assuntos
Exposição Dietética , Grão Comestível , Contaminação de Alimentos , Fórmulas Infantis , Ocratoxinas , Tricotecenos , Zearalenona , Humanos , Zearalenona/análise , Fórmulas Infantis/química , Chile , Grão Comestível/química , Lactente , Tricotecenos/análise , Contaminação de Alimentos/análise , Ocratoxinas/análise , Exposição Dietética/análise , Exposição Dietética/efeitos adversos , Medição de Risco , Recém-Nascido , Alimentos Infantis/análise
17.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560889

RESUMO

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Assuntos
Ácidos e Sais Biliares , Zearalenona , Humanos , Ratos , Masculino , Feminino , Animais , Ácidos e Sais Biliares/metabolismo , Zearalenona/metabolismo , Fígado/metabolismo , Hipotálamo , Ingestão de Alimentos
18.
Ecotoxicol Environ Saf ; 277: 116343, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657456

RESUMO

Curcumin (CUR) is a compound extracted from turmeric that has a variety of functions including antioxidant and anti-inflammatory. As an estrogen-like mycotoxin, zearalenone (ZEN) not only attacks the reproductive system, but also has toxic effects on the liver. However, whether CUR can alleviate ZEN-induced liver injury remains unclear. This paper aims to investigate the protective effect of CUR against ZEN-induced liver injury in mice and explore the molecular mechanism involved. BALB/c mice were randomly divided into control (CON) group, CUR group (200 mg/kg b. w. CUR), ZEN group (40 mg/kg b. w. ZEN) and CUR+ZEN group (200 mg/kg b. w. CUR+40 mg/kg b. w. ZEN). 28 d after ZEN exposure and CUR treatment, blood and liver samples were collected for subsequent testing. The results showed that CUR reversed ZEN-induced hepatocyte swelling and necrosis in mice. It significantly reduced the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice (p < 0.05). In addition, CUR significantly reduced hepatic ROS, malondialdehyde, hydrogen peroxide and apoptosis levels in mice (p < 0.05). Quantitative RT-PCR and Western blot results showed that CUR significantly reduced the expression of Bax and Caspase3, and reversed the increase of Nrf2, HO-1 and NQO1 expression in the liver of mice induced by ZEN (p < 0.05). In conclusion, CUR alleviated ZEN-induced liver injury in mice by scavenging ROS and inhibiting the mitochondrial apoptotic pathway.


Assuntos
Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Curcumina , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio , Zearalenona , Animais , Zearalenona/toxicidade , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia
19.
Food Chem ; 448: 139127, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608399

RESUMO

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Zearalenona , Zearalenona/análise , Zearalenona/química , Cobre/química , Técnicas Biossensoriais/instrumentação , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Limite de Detecção , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Fluorescência
20.
Brain Behav ; 14(4): e3487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648385

RESUMO

INTRODUCTION: Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS: Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 µg/30 µg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS: Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION: These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.


Assuntos
Cuprizona , Doenças Desmielinizantes , Lactonas , Camundongos Endogâmicos C57BL , Microglia , Resorcinóis , Zearalenona/administração & dosagem , Animais , Cuprizona/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , MAP Quinase Quinase Quinases/metabolismo , Zearalenona/farmacologia , Zearalenona/análogos & derivados , Polaridade Celular/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...