Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428933

RESUMO

Aggregation of α-synuclein (αS) leads to the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies. αS has been described to exist in both cytosolic and membrane-associated forms, the relative abundance of which has remained unsettled. To study αS under the most relevant conditions by a quantitative method, we cultured and matured rodent primary cortical neurons for >17 days and determined αS cytosol:membrane distribution via centrifugation-free sequential extractions based on the weak ionic detergent digitonin. We noticed that at lower temperatures (4 °C or room temperature), αS was largely membrane-associated. At 37 °C, however, αS solubility was markedly increased. In contrast, the extraction of control proteins (GAPDH, cytosolic; calnexin, membrane) was not affected by temperature. When we compared the relative distribution of the synuclein homologs αS and ß-synuclein (ßS) under various conditions that differed in temperature and digitonin concentration (200-1200 µg/ml), we consistently found αS to be more membrane-associated than ßS. Both proteins, however, exhibited temperature-dependent membrane binding. Under the most relevant conditions (37 °C and 800 µg/ml digitonin, i.e., the lowest digitonin concentration that extracted cytosolic GAPDH to near completion), cytosolic distribution was 49.8% ± 9.0% for αS and 63.6% ± 6.6% for ßS. PD-linked αS A30P was found to be largely cytosolic, confirming previous studies that had used different methods. Our work highlights the dynamic nature of cellular synuclein behavior and has important implications for protein-biochemical and cell-biological studies of αS proteostasis, such as testing the effects of genetic and pharmacological manipulations.


Assuntos
Membrana Celular/genética , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , beta-Sinucleína/genética , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Humanos , Lentivirus/genética , Neurônios/química , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Cultura Primária de Células , Agregados Proteicos/genética , Agregados Proteicos/imunologia , Agregação Patológica de Proteínas/genética , Ligação Proteica/genética , Ratos , Temperatura , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , alfa-Sinucleína/isolamento & purificação , beta-Sinucleína/química , beta-Sinucleína/imunologia , beta-Sinucleína/isolamento & purificação
2.
Mar Drugs ; 13(11): 6665-86, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26528989

RESUMO

Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, ß- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, ß and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of "non verified" sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.


Assuntos
alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo , Animais , Bases de Dados Genéticas , Peixes/genética , Peixes/metabolismo , Humanos , Análise de Sequência , alfa-Sinucleína/genética , alfa-Sinucleína/isolamento & purificação , beta-Sinucleína/genética , beta-Sinucleína/isolamento & purificação , gama-Sinucleína/genética , gama-Sinucleína/isolamento & purificação
3.
Biochemistry ; 54(2): 279-92, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25490121

RESUMO

Despite two decades of research, the structure-function relationships of endogenous, physiological forms of α-synuclein (αSyn) are not well understood. Most in vitro studies of this Parkinson's disease-related protein have focused on recombinant αSyn that is unfolded and monomeric, assuming that this represents its state in the normal human brain. Recently, we have provided evidence that αSyn exists in considerable part in neurons, erythrocytes, and other cells as a metastable multimer that principally sizes as a tetramer. In contrast to recombinant αSyn, physiological tetramers purified from human erythrocytes have substantial α-helical content and resist pathological aggregation into ß-sheet rich fibers. Here, we report the first method to fully purify soluble αSyn from the most relevant source, human brain. We describe protocols that purify αSyn to homogeneity from nondiseased human cortex using ammonium sulfate precipitation, gel filtration, and ion exchange, hydrophobic interaction, and affinity chromatographies. Cross-linking of the starting material and the partially purified chromatographic fractions revealed abundant αSyn multimers, including apparent tetramers, but these were destabilized in large part to monomers during the final purification step. The method also fully purified the homologue ß-synuclein, with a similar outcome. Circular dichroism spectroscopy showed that purified, brain-derived αSyn can display more helical content than the recombinant protein, but this result varied. Collectively, our data suggest that purifying αSyn to homogeneity destabilizes native, α-helix-rich multimers that exist in intact and partially purified brain samples. This finding suggests existence of a stabilizing cofactor (e.g., a small lipid) present inside neurons that is lost during final purification.


Assuntos
Química Encefálica , Estabilidade Proteica , alfa-Sinucleína/isolamento & purificação , Precipitação Química , Cromatografia em Gel , Cromatografia por Troca Iônica , Dicroísmo Circular , Humanos , Espectrometria de Massas , Multimerização Proteica , Estrutura Secundária de Proteína , alfa-Sinucleína/química , beta-Sinucleína/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...