Your browser doesn't support javascript.
loading
Modeling functional network topology following stroke through graph theory: functional reorganization and motor recovery prediction
Almeida, S.R.M.; Stefano Filho, C.A.; Vicentini, J.; Novi, S.L.; Mesquita, R.C.; Castellano, G.; Li, L.M..
Affiliation
  • Almeida, S.R.M.; Universidade de Campinas. Departamento de Neurologia, Faculdade de Ciências Médicas. Campinas. BR
  • Stefano Filho, C.A.; BRAINN (Brazilian Institute of Neuroscience and Neurotechnology). Campinas. BR
  • Vicentini, J.; Universidade de Campinas. Departamento de Neurologia, Faculdade de Ciências Médicas. Campinas. BR
  • Novi, S.L.; BRAINN (Brazilian Institute of Neuroscience and Neurotechnology). Campinas. BR
  • Mesquita, R.C.; BRAINN (Brazilian Institute of Neuroscience and Neurotechnology). Campinas. BR
  • Castellano, G.; BRAINN (Brazilian Institute of Neuroscience and Neurotechnology). Campinas. BR
  • Li, L.M.; Universidade de Campinas. Departamento de Neurologia, Faculdade de Ciências Médicas. Campinas. BR
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;55: e12036, 2022. tab, graf
Article in En | LILACS-Express | LILACS | ID: biblio-1394129
Responsible library: BR1.1
ABSTRACT
The study of functional reorganization following stroke has been steadily growing supported by advances in neuroimaging techniques, such as functional magnetic resonance imaging (fMRI). Concomitantly, graph theory has been increasingly employed in neuroscience to model the brain's functional connectivity (FC) and to investigate it in a variety of contexts. The aims of this study were 1) to investigate the reorganization of network topology in the ipsilesional (IL) and contralesional (CL) hemispheres of stroke patients with (motor stroke group) and without (control stroke group) motor impairment, and 2) to predict motor recovery through the relationship between local topological variations of the functional network and increased motor function. We modeled the brain's FC as a graph using fMRI data, and we characterized its interactions with the following graph metrics degree, clustering coefficient, characteristic path length, and betweenness centrality (BC). For both patient groups, BC yielded the largest variations between the two analyzed time points, especially in the motor stroke group. This group presented significant correlations (P<0.05) between average BC changes and the improvements in upper-extremity Fugl-Meyer (UE-FM) scores at the primary sensorimotor cortex and the supplementary motor area for the CL hemisphere. These regions participate in processes related to the selection, planning, and execution of movement. Generally, higher increases in average BC over these areas were related to larger improvements in UE-FM assessment. Although the sample was small, these results suggest the possibility of using BC as an indication of brain plasticity mechanisms following stroke.
Key words

Full text: 1 Collection: 01-internacional Database: LILACS Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Braz. j. med. biol. res / Rev. bras. pesqui. méd. biol Journal subject: BIOLOGIA / MEDICINA Year: 2022 Document type: Article / Project document Affiliation country: Brazil Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: LILACS Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Braz. j. med. biol. res / Rev. bras. pesqui. méd. biol Journal subject: BIOLOGIA / MEDICINA Year: 2022 Document type: Article / Project document Affiliation country: Brazil Country of publication: Brazil