Examining differences in brain metabolism associated with childhood maltreatment and suicidal attempts in euthymic patients with bipolar disorder: a PET and machine learning study
Braz. J. Psychiatry (São Paulo, 1999, Impr.)
; Braz. J. Psychiatry (São Paulo, 1999, Impr.);45(2): 127-131, Mar.-Apr. 2023. tab, graf
Article
in En
|
LILACS-Express
| LILACS
| ID: biblio-1439551
Responsible library:
BR1.1
ABSTRACT
Objective:
Childhood maltreatment (CM) is a significant risk factor for the development and severity of bipolar disorder (BD) with increased risk of suicide attempts (SA). This study evaluated whether a machine learning algorithm could be trained to predict if a patient with BD has a history of CM or previous SA based on brain metabolism measured by positron emission tomography.Methods:
Thirty-six euthymic patients diagnosed with BD type I, with and without a history of CM were assessed using the Childhood Trauma Questionnaire. Suicide attempts were assessed through the Mini International Neuropsychiatric Interview (MINI-Plus) and a semi-structured interview. Resting-state positron emission tomography with 18F-fluorodeoxyglucose was conducted, electing only grey matter voxels through the Statistical Parametric Mapping toolbox. Imaging analysis was performed using a supervised machine learning approach following Gaussian Process Classification.Results:
Patients were divided into 18 participants with a history of CM and 18 participants without it, along with 18 individuals with previous SA and 18 individuals without such history. The predictions for CM and SA were not significant (accuracy = 41.67%; p = 0.879).Conclusion:
Further investigation is needed to improve the accuracy of machine learning, as its predictive qualities could potentially be highly useful in determining histories and possible outcomes of high-risk psychiatric patients.
Full text:
1
Collection:
01-internacional
Database:
LILACS
Type of study:
Prognostic_studies
/
Qualitative_research
/
Risk_factors_studies
Language:
En
Journal:
Braz. J. Psychiatry (São Paulo, 1999, Impr.)
Journal subject:
PSIQUIATRIA
Year:
2023
Document type:
Article
Affiliation country:
Brazil
/
Canada
Country of publication:
Brazil