Your browser doesn't support javascript.
loading
Catalytically active phospholipase A2 myotoxin from Crotalus durissus terrificus induces proliferation and differentiation of myoblasts dependent on prostaglandins produced by both COX-1 and COX-2 pathways
Int J Biol Macromol, v. 187, 603-613, set. 2021
Article in En | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-3907
Responsible library: BR78.1
ABSTRACT
Although crotoxin B (CB) is a well-established catalytically active secretory phospholipase A2 group IIA (sPLA2-IIA) myotoxin, we investigated its potential stimulatory effect on myogenesis with the involvement of prostaglandins (PGs) produced by cyclooxygenase (COX)-1 and -2 pathways. Myoblast C2C12 were cultured in proliferation or commitment protocols and incubated with CB followed by lumiracoxib (selective COX-2 inhibitor) or valeryl salicylate (selective COX-1 inhibitor) and subjected to analysis of PG release, cell proliferation and activation of myogenic regulatory factors (MRFs). Our data showed that CB in non-cytotoxic concentrations induces an increase of COX-2 protein expression and stimulates the activity of both COX isoforms to produce PGE2, PGD2 and 15d-PGJ2. CB induced an increase in the proliferation of C2C12 myoblast cells dependent on PGs from both COX-1 and COX-2 pathways. In addition, CB stimulated the activity of Pax7, MyoD, Myf5 and myogenin in proliferated cells. Otherwise, CB increased myogenin activity but not MyoD in committed cells. Our findings evidence the role of COX-1- and COX-2-derived PGs in modulating CB-induced activation of MRFs. This study contributes to the knowledge that CB promote early myogenic events via regulatory mechanisms on PG-dependent COX pathways, showing new concepts about the effect of sPLA2-IIA in skeletal muscle repair.
Key words

Full text: 1 Collection: 06-national / BR Database: SES-SP / SESSP-IBPROD Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article

Full text: 1 Collection: 06-national / BR Database: SES-SP / SESSP-IBPROD Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article