Comportamiento biomecánico del injerto anterior en la cirugía del raquis lumbar. Estudio comparativo mediante un modelo de elementos finitos / Biomechanical performance of the anterior graft in lumbar spine surgery. Comparative finite-element analysis
Rev. ortop. traumatol. (Madr., Ed. impr.)
; Rev. ortop. traumatol. (Madr., Ed. impr.);51(5): 284-295, sep. - oct 2007. ilus
Article
in Es
| IBECS
| ID: ibc-65557
Responsible library:
ES15.1
Localization: ES15.1 - BNCS
Objetivo. Investigar el comportamiento biomecánico de diversos aloinjertos y el efecto del tratamiento del platillo vertebral en un modelo de corporectomía lumbar. Método. Se utiliza un modelo modificado no lineal de elementos finitos en tres dimensiones de la columna lumbar al que se adaptó un instrumental transpedicular. Se modelaron por elementos finitos un fragmento diafisario de fémur, uno de tibia y uno de peroné. Se investigaron cuatro configuraciones: con fémur, con tibia, con tres peronés y con seis peronés. Se evaluaron cuatro superficies sobre las cuales se sustentaba el injerto en función de la resección de los distintos componentes. Se aplicaron fuerzas de compresión de 1.000 N, flexión, extensión y rotación de 15 Nm respectivamente. Se calcularon las tensiones y desplazamientos generados. Resultados. La resección completa de cartílago y hueso subcondral es la configuración que menos altera las tensiones dentro de las vértebras adyacentes. El uso de fragmentos de peroné modifica en mayor medida las tensiones en las vértebras adyacentes. El uso de tibia genera una asimetría en los campos de desplazamiento debido a la forma de dicho injerto. Los resultados con fémur modifican en menor medida los estreses en las vértebras adyacentes, configurando un montaje más fisiológico. Conclusiones. La preservación del hueso cortical del platillo vertebral no ofrece ninguna ventaja biomecánica en la reconstrucción de la columna anterior. El aloinjerto de fémur es el más adecuado para la sustitución del cuerpo vertebral, comparado con tibia y peroné
Methods. A modified non-lineal tri-dimensional finite-element model of the lumbar spine was used, to which a set of transpedicular instruments was adapted. By means of a finite-element analysis, modeling was carried out of diaphyseal fragments of the femur, the tibia and the fibula. Four configurations were analyzed: with one femur, with one tibia, with three fibulas and with six fibulas. Four surfaces were evaluated that gave support to the graft according to the resection of the various components. Compression loads of 1,000 N were applied, as well as flexion, extension and rotation of 15 Nm respectively. The stresses and displacements caused were calculated. Results. Full cartilage and subchondral bone resection is the configuration that least disrupts stresses within the adjacent vertebrae whereas the use of fibular fragments causes the greatest disruption. The use of the tibial bone gives rise to an asymmetry in the displacement area because of the shape of the said graft. The femur does not bring about a significant disruption of stresses in the adjacent vertebrae thereby constituting a more physiological construct. Conclusions. Preservation of the endplate's cortical bone does not lead to any biomechanical advantage in the reconstruction of the anterior spine. Femoral allografts are the most appropriate ones to replace the vertebral body, compared with the tibia or the fibula
Methods. A modified non-lineal tri-dimensional finite-element model of the lumbar spine was used, to which a set of transpedicular instruments was adapted. By means of a finite-element analysis, modeling was carried out of diaphyseal fragments of the femur, the tibia and the fibula. Four configurations were analyzed: with one femur, with one tibia, with three fibulas and with six fibulas. Four surfaces were evaluated that gave support to the graft according to the resection of the various components. Compression loads of 1,000 N were applied, as well as flexion, extension and rotation of 15 Nm respectively. The stresses and displacements caused were calculated. Results. Full cartilage and subchondral bone resection is the configuration that least disrupts stresses within the adjacent vertebrae whereas the use of fibular fragments causes the greatest disruption. The use of the tibial bone gives rise to an asymmetry in the displacement area because of the shape of the said graft. The femur does not bring about a significant disruption of stresses in the adjacent vertebrae thereby constituting a more physiological construct. Conclusions. Preservation of the endplate's cortical bone does not lead to any biomechanical advantage in the reconstruction of the anterior spine. Femoral allografts are the most appropriate ones to replace the vertebral body, compared with the tibia or the fibula
Search on Google
Collection:
06-national
/
ES
Database:
IBECS
Main subject:
Spinal Diseases
/
Biomechanical Phenomena
/
Finite Element Analysis
Limits:
Humans
Language:
Es
Journal:
Rev. ortop. traumatol. (Madr., Ed. impr.)
Year:
2007
Document type:
Article