Your browser doesn't support javascript.
loading
The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis
Mörking, Patricia Alves; Rampazzo, Rita de Cássia Pontello; Walrad, Pegine; Probst, Christian Macagnan; Soares, Maurilio José; Gradia, Daniela Fiori; Pavoni, Daniela Parada; Krieger, Marco Aurélio; Matthews, Keith; Goldenberg, Samuel; Fragoso, Stenio Perdigão; Dallagiovanna, Bruno.
Affiliation
  • Mörking, Patricia Alves; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Rampazzo, Rita de Cássia Pontello; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Walrad, Pegine; University of Edinburgh. School of Biological Sciences. Centre for Immunity, Infection and Evolution. Edinburgh. GB
  • Probst, Christian Macagnan; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Soares, Maurilio José; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Gradia, Daniela Fiori; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Pavoni, Daniela Parada; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Krieger, Marco Aurélio; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Matthews, Keith; University of Edinburgh. School of Biological Sciences. Centre for Immunity, Infection and Evolution. Edinburgh. GB
  • Goldenberg, Samuel; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Fragoso, Stenio Perdigão; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
  • Dallagiovanna, Bruno; Fiocruz. Instituto Carlos Chagas. Curitiba. BR
Mem. Inst. Oswaldo Cruz ; 107(6): 790-799, set. 2012. ilus, graf, tab
Article in En | LILACS | ID: lil-649496
Responsible library: BR1.1
ABSTRACT
Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: LILACS Main subject: Trypanosoma cruzi / RNA, Messenger / Protozoan Proteins / RNA-Binding Proteins / DNA-Binding Proteins Language: En Journal: Mem. Inst. Oswaldo Cruz Journal subject: MEDICINA TROPICAL / PARASITOLOGIA Year: 2012 Document type: Article Affiliation country: Brazil / United kingdom Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: LILACS Main subject: Trypanosoma cruzi / RNA, Messenger / Protozoan Proteins / RNA-Binding Proteins / DNA-Binding Proteins Language: En Journal: Mem. Inst. Oswaldo Cruz Journal subject: MEDICINA TROPICAL / PARASITOLOGIA Year: 2012 Document type: Article Affiliation country: Brazil / United kingdom Country of publication: Brazil