Your browser doesn't support javascript.
loading
Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells.
Muoio, Deborah M; Way, James M; Tanner, Charles J; Winegar, Deborah A; Kliewer, Steven A; Houmard, Joseph A; Kraus, William E; Dohm, G Lynis.
Affiliation
  • Muoio DM; Department of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. muoio@duke.edu
Diabetes ; 51(4): 901-9, 2002 Apr.
Article in En | MEDLINE | ID: mdl-11916905
In humans, skeletal muscle is a major site of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) expression, but its function in this tissue is unclear. We investigated the role of hPPAR-alpha in regulating muscle lipid utilization by studying the effects of a highly selective PPAR-alpha agonist, GW7647, on [(14)C]oleate metabolism and gene expression in primary human skeletal muscle cells. Robust induction of PPAR-alpha protein expression occurred during muscle cell differentiation and corresponded with differentiation-dependent increases in oleate oxidation. In mature myotubes, 48-h treatment with 10-1,000 nmol/l GW7647 increased oleate oxidation dose-dependently, up to threefold. Additionally, GW7647 decreased oleate esterification into myotube triacylglycerol (TAG), up to 45%. This effect was not abolished by etomoxir, a potent inhibitor of beta-oxidation, indicating that PPAR-alpha-mediated TAG depletion does not depend on reciprocal changes in fatty acid catabolism. Consistent with its metabolic actions, GW7647 induced mRNA expression of mitochondrial enzymes that promote fatty acid catabolism; carnitine palmityltransferase 1 and malonyl-CoA decarboxylase increased approximately 2-fold, whereas pyruvate dehydrogenase kinase 4 increased 45-fold. Expression of several genes that regulate glycerolipid synthesis was not changed by GW7647 treatment, implicating involvement of other targets to explain the TAG-depleting effect of the compound. These results demonstrate a role for hPPAR-alpha in regulating muscle lipid homeostasis.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Phenylurea Compounds / Transcription Factors / Triglycerides / Butyrates / Receptors, Cytoplasmic and Nuclear / Muscle, Skeletal / Oleic Acid / Fatty Acids, Nonesterified Limits: Humans Language: En Journal: Diabetes Year: 2002 Document type: Article Affiliation country: United States Country of publication: United States
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Phenylurea Compounds / Transcription Factors / Triglycerides / Butyrates / Receptors, Cytoplasmic and Nuclear / Muscle, Skeletal / Oleic Acid / Fatty Acids, Nonesterified Limits: Humans Language: En Journal: Diabetes Year: 2002 Document type: Article Affiliation country: United States Country of publication: United States