Putative colon cancer risk factors damage global DNA and TP53 in primary human colon cells isolated from surgical samples.
Food Chem Toxicol
; 41(5): 655-64, 2003 May.
Article
in En
| MEDLINE
| ID: mdl-12659718
This study describes a novel in vitro method in genetic toxicology that is based on detection of chemical-induced DNA damage connected with altered migration of TP53 in primary human colonocytes. Techniques were developed to isolate high numbers of human epithelial colon cells from surgical tissues. High quantities of viable cells were obtained per donor. The primary cells were treated with the endogenous risk factors trans-2-hexenal, and hydrogen peroxide. Global DNA damage and repair were measured by single-cell gel electrophoresis (Comet assay). We compared responses of primary colon cells to HT29clone19A, a differentiated human colon tumour cell line, for which the karyotype was analysed with 24-colour FISH. Both compounds were genotoxic in both cell types and most of the induced DNA damage was repaired after 30 min. Specific migration of TP53 was determined by fluorescence in situ hybridization (Comet FISH). Using primary colon cells, we quantified the migration of TP53 signals into the comet tails. In these cells TP53 was more sensitive than global DNA for genotoxicity induced by trans-2-hexenal and H(2)O(2). HT29clone19A cells cannot be used for Comet FISH because of their aberrant karyotype. The approach described allows us to obtain more knowledge of putative risk factors in colon carcinogenesis.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
DNA Damage
/
Cell Transformation, Neoplastic
/
Genes, p53
/
Colonic Neoplasms
Type of study:
Etiology_studies
/
Risk_factors_studies
Limits:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Language:
En
Journal:
Food Chem Toxicol
Year:
2003
Document type:
Article
Affiliation country:
Germany
Country of publication:
United kingdom