Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase.
Biochemistry
; 30(21): 5118-25, 1991 May 28.
Article
in En
| MEDLINE
| ID: mdl-1645191
The beta-adrenergic receptor kinase (beta-ARK) phosphorylates G protein coupled receptors in an agonist-dependent manner. Since the exact sites of receptor phosphorylation by beta-ARK are poorly defined, the identification of substrate amino acids that are critical to phosphorylation by the kinase are also unknown. In this study, a peptide whose sequence is present in a portion of the third intracellular loop region of the human platelet alpha 2-adrenergic receptor is shown to serve as a substrate for beta-ARK. Removal of the negatively charged amino acids surrounding a cluster of serines in this alpha 2-peptide resulted in a complete loss of phosphorylation by the kinase. A family of peptides was synthesized to further study the role of acidic amino acids in peptide substrates of beta-ARK. By kinetic analyses of the phosphorylation reactions, beta-ARK exhibited a marked preference for negatively charged amino acids localized to the NH2-terminal side of a serine or threonine residue. While there were no significant differences between glutamic and aspartic acid residues, serine-containing peptides were 4-fold better substrates than threonine. Comparing a variety of kinases, only rhodopsin kinase and casein kinase II exhibited significant phosphorylation of the acidic peptides. Unlike beta-ARK, RK preferred acid residues localized to the carboxyl-terminal side of the serine. A feature common to beta-ARK and RK was a much greater Km for peptide substrates as compared to that for intact receptor substrates.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Protein Kinases
/
Cyclic AMP-Dependent Protein Kinases
/
Eye Proteins
Limits:
Animals
Language:
En
Journal:
Biochemistry
Year:
1991
Document type:
Article
Country of publication:
United States