Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes.
Plant J
; 77(4): 639-52, 2014 Feb.
Article
in En
| MEDLINE
| ID: mdl-24387628
In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oxygen
/
Plant Proteins
/
Arabidopsis
/
Gene Expression Regulation, Plant
/
Zea mays
/
Meiosis
Type of study:
Prognostic_studies
Language:
En
Journal:
Plant J
Journal subject:
BIOLOGIA MOLECULAR
/
BOTANICA
Year:
2014
Document type:
Article
Affiliation country:
United States
Country of publication:
United kingdom