Your browser doesn't support javascript.
loading
Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth.
Jog, Rahul; Pandya, Maharshi; Nareshkumar, G; Rajkumar, Shalini.
Affiliation
  • Jog R; Institute of Science, Nirma University, Ahmedabad - 81, Gujarat, India.
  • Pandya M; Institute of Science, Nirma University, Ahmedabad - 81, Gujarat, India.
  • Nareshkumar G; Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodra - 02, Gujarat, India.
  • Rajkumar S; Institute of Science, Nirma University, Ahmedabad - 81, Gujarat, India.
Microbiology (Reading) ; 160(Pt 4): 778-788, 2014 Apr.
Article in En | MEDLINE | ID: mdl-24430493
The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l(-1)), phytase (0.68 U ml(-1)), chitinase (6.2 U ml(-1)), indole-3-acetic acid (136.5 mg l(-1)) and siderophore (47.4 mg l(-1)) production, as well as utilizing all the rhizospheric sugars under test. Malate (50-55 mmol l(-1)) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes - isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and (1)H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33%) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field applications.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phosphates / Soil Microbiology / Streptomyces / Triticum / Plant Roots / Plant Development / Antibiosis Language: En Journal: Microbiology (Reading) Journal subject: MICROBIOLOGIA Year: 2014 Document type: Article Affiliation country: India Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phosphates / Soil Microbiology / Streptomyces / Triticum / Plant Roots / Plant Development / Antibiosis Language: En Journal: Microbiology (Reading) Journal subject: MICROBIOLOGIA Year: 2014 Document type: Article Affiliation country: India Country of publication: United kingdom