Your browser doesn't support javascript.
loading
Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application.
Wang, Xia; Wang, Qingxiang; Wang, Qinghua; Gao, Feng; Gao, Fei; Yang, Yizhen; Guo, Hongxu.
Affiliation
  • Wang X; College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University , Zhangzhou, Fujian 363000, P. R. China.
ACS Appl Mater Interfaces ; 6(14): 11573-80, 2014 Jul 23.
Article in En | MEDLINE | ID: mdl-25000168
A highly dispersible and stable nanocomposite of Cu(tpa)-GO (Cu(tpa) = copper terephthalate metal-organic framework, GO = graphene oxide) was prepared through a simple ultrasonication method. The morphology and structure of the obtained composite were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis, Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). On the basis of the characterization results, the binding mechanism of the Cu(tpa) and GO was speculated to be the cooperative interaction of π-π stacking, hydrogen bonding, and Cu-O coordination. The electrochemical sensing property of Cu(tpa)-GO composite was investigated through casting the composite on a glassy carbon electrode (GCE), followed by an electro-reduction treatment to transfer the GO in the composite to the highly conductive reduced form (electrochemically reduced graphene, EGR). The results demonstrated that the electrochemical signals and peak profiles of the two drugs of acetaminophen (ACOP) and dopamine (DA) were significantly improved by the modified material, owing to the synergistic effect from high conductivity of EGR and unique electron mediating action of Cu(tpa). Under the optimum conditions, the oxidation peak currents of ACOP and DA were linearly correlated to their concentrations in the ranges of 1-100 and 1-50 µM, respectively. The detection limits for ACOP and DA were estimated to be as low as 0.36 and 0.21 µM, respectively.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2014 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2014 Document type: Article Country of publication: United States