Your browser doesn't support javascript.
loading
Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime.
Affiliation
  • Sigalotti LD; Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 180, 02200 México D.F., Mexico and Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Ve
  • Troconis J; Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela.
  • Sira E; Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela.
  • Peña-Polo F; Centro de Física, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado Postal 20632, Caracas 1020-A, Venezuela.
  • Klapp J; Departamento de Física, Instituto Nacional de Investigaciones Nucleares, ININ, Km. 36.5, Carretera México-Toluca, 52750 La Marquesa, Estado de México, Mexico and Departamento de Matemáticas, Cinvestav del Instituto Politécnico Nacional (I.P.N.), 07360 México D.F., Mexico.
Article in En | MEDLINE | ID: mdl-26274283
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.
Search on Google
Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Phys Rev E Stat Nonlin Soft Matter Phys Journal subject: BIOFISICA / FISIOLOGIA Year: 2015 Document type: Article Country of publication: United States
Search on Google
Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Phys Rev E Stat Nonlin Soft Matter Phys Journal subject: BIOFISICA / FISIOLOGIA Year: 2015 Document type: Article Country of publication: United States