Your browser doesn't support javascript.
loading
Chromosomal disruption and rearrangements during murine sarcoma development converge to stable karyotypic formation kept by telomerase overexpression.
de Oliveira-Júnior, Robson José; Ueira-Vieira, Carlos; Sena, Angela Aparecida Servino; Reis, Carolina Fernandes; Mineo, José Roberto; Goulart, Luiz Ricardo; Morelli, Sandra.
Affiliation
  • de Oliveira-Júnior RJ; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil. robson_junr@yahoo.com.br.
  • Ueira-Vieira C; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.
  • Sena AA; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.
  • Reis CF; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.
  • Mineo JR; Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
  • Goulart LR; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil. lrgoulart@ufu.br.
  • Morelli S; Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA. lrgoulart@ufu.br.
J Biomed Sci ; 23: 22, 2016 Feb 03.
Article in En | MEDLINE | ID: mdl-26841871
BACKGROUND: Tumor initiation presents a complex and unstable genomic landscape; one of the earliest hallmark events of cancer, and its progression is probably based on selection mechanisms under specific environments that lead to functional tumor cell speciation. We hypothesized that viable tumor phenotypes possess common and highly stable karyotypes and their proliferation is facilitated by an attuned high telomerase activity. Very few investigations have focused on the evolution of common chromosomal rearrangements associated to molecular events that result in functional phenotypes during tumor development. RESULTS: We have used cytogenetic, flow cytometry and cell culture tools to investigate chromosomal rearrangements and clonality during cancer development using the murine sarcoma TG180 model, and also molecular biology techniques to establish a correlation between chromosome instability and telomerase activity, since telomeres are highly affected during cancer evolution. Cytogenetic analysis showed a near-tetraploid karyotype originated by endoreduplication. Chromosomal rearrangements were random events in response to in vitro conditions, but a stable karyotypic equilibrium was achieved during tumor progression in different in vivo conditions, suggesting that a specific microenvironment may stabilize the chromosomal number and architecture. Specific chromosome aberrations (marker chromosomes) and activated regions (rDNAs) were ubiquitous in the karyotype, suggesting that the conservation of these patterns may be advantageous for tumor progression. High telomerase expression was also correlated with the chromosomal rearrangements stabilization. CONCLUSIONS: Our data reinforce the notion that the sarcoma cell evolution converges from a highly unstable karyotype to relatively stable and functional chromosome rearrangements, which are further enabled by telomerase overexpression.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sarcoma / Translocation, Genetic / Gene Expression Regulation, Enzymologic / Gene Expression Regulation, Neoplastic / Telomerase / Neoplasm Proteins Limits: Animals Language: En Journal: J Biomed Sci Journal subject: MEDICINA Year: 2016 Document type: Article Affiliation country: Brazil Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sarcoma / Translocation, Genetic / Gene Expression Regulation, Enzymologic / Gene Expression Regulation, Neoplastic / Telomerase / Neoplasm Proteins Limits: Animals Language: En Journal: J Biomed Sci Journal subject: MEDICINA Year: 2016 Document type: Article Affiliation country: Brazil Country of publication: United kingdom