Your browser doesn't support javascript.
loading
Evaluation of the efficiency of artificial neural networks for genetic value prediction.
Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M.
Affiliation
  • Silva GN; Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
  • Tomaz RS; Laboratório de Bioinformática, Viçosa, MG, Brasil.
  • Sant'Anna IC; Departamento de Engenharia Agronômica, ]Universidade Estadual Paulista "Júlio de Mesquita Filho", Dracena, SP, Brasil.
  • Carneiro VQ; Departamento de Biologia Geral Universidade Federal de Viçosa Universidade Federal de Viçosa, Viçosa, MG, Brasil.
  • Cruz CD; Laboratório de Bioinformática, Viçosa, MG, Brasil.
  • Nascimento M; Departamento de Biologia Geral Universidade Federal de Viçosa Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Genet Mol Res ; 15(1)2016 Mar 28.
Article in En | MEDLINE | ID: mdl-27051007
Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neural Networks, Computer / Genetic Fitness / Models, Genetic Type of study: Evaluation_studies / Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Genet Mol Res Journal subject: BIOLOGIA MOLECULAR / GENETICA Year: 2016 Document type: Article Affiliation country: Brazil Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neural Networks, Computer / Genetic Fitness / Models, Genetic Type of study: Evaluation_studies / Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: Genet Mol Res Journal subject: BIOLOGIA MOLECULAR / GENETICA Year: 2016 Document type: Article Affiliation country: Brazil Country of publication: Brazil