A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks.
Sensors (Basel)
; 16(7)2016 Jul 05.
Article
in En
| MEDLINE
| ID: mdl-27399696
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Sensors (Basel)
Year:
2016
Document type:
Article
Affiliation country:
Mexico
Country of publication:
Switzerland