Brain-derived neurotrophic factor signaling plays a role in resilience to stress promoted by isoquinoline in defeated mice.
J Psychiatr Res
; 94: 78-87, 2017 11.
Article
in En
| MEDLINE
| ID: mdl-28688339
Certain stressful life events have been associated with the onset of depression. This study aims to investigate if 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI) is effective against social avoidance induced by social defeat stress model in mice. Furthermore, it was investigated the effects of FDPI in the mouse prefrontal cortical plasticity-related proteins and some parameters of toxicity. Adult Swiss mice were subjected to social defeat stress for 10 days. Two protocols with FDPI were carried out: 1- FDPI (25 mg/kg, intragastric) was administered to mice 24 h after the last social defeat stress episode; 2- FDPI (1-25 mg/kg, intragastric) was administered to mice once a day for 10 days concomitant with the social defeat stress. The mice performed social avoidance and locomotor tests. The prefrontal cortical protein contents of kinase B (Akt), extracellular signal-regulated kinase (ERK), cAMP-response element binding protein (CREB), pro-brain-derived neurotrophic factor (proBDNF), p75NTR, neuronal nuclear protein (NeuN) and nuclear factor-κB (NF-κB) were determined in mice. A single administration of FDPI (25 mg/kg) partially protected against social avoidance induced by stress in mice. Repeated administration of FDPI (25 mg/kg) protected against social avoidance induced by stress in mice. Social defeat stress decreased the protein contents of p75NTR, NeuN and the pERK/ERK ratio but increased those of proBDNF and the pCREB/CREB ratio, without changing that of NF-κB. Repeated administration of FDPI modulated signaling pathways altered by social defeat stress in mice. The present findings demonstrate that FDPI promoted resilience to stress in mice.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Social Behavior
/
Stress, Psychological
/
Avoidance Learning
/
Behavior, Animal
/
Prefrontal Cortex
/
Brain-Derived Neurotrophic Factor
/
Resilience, Psychological
/
Isoquinolines
Type of study:
Prognostic_studies
Aspects:
Determinantes_sociais_saude
Limits:
Animals
Language:
En
Journal:
J Psychiatr Res
Year:
2017
Document type:
Article
Affiliation country:
Brazil
Country of publication:
United kingdom