Your browser doesn't support javascript.
loading
Classification of Spatiotemporal Neural Activity Patterns in Brain Imaging Data.
Song, Min; Kang, Minseok; Lee, Hyeonsu; Jeong, Yong; Paik, Se-Bum.
Affiliation
  • Song M; Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
  • Kang M; Program of Brain and Cognitive Engineering, KAIST, Daejeon, 34141, Republic of Korea.
  • Lee H; Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
  • Jeong Y; Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
  • Paik SB; Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea. yong@kaist.ac.kr.
Sci Rep ; 8(1): 8231, 2018 05 29.
Article in En | MEDLINE | ID: mdl-29844346
Various patterns of neural activity are observed in dynamic cortical imaging data. Such patterns may reflect how neurons communicate using the underlying circuitry to perform appropriate functions; thus it is crucial to investigate the spatiotemporal characteristics of the observed neural activity patterns. In general, however, neural activities are highly nonlinear and complex, so it is a demanding job to analyze them quantitatively or to classify the patterns of observed activities in various types of imaging data. Here, we present our implementation of a novel method that successfully addresses the above issues for precise comparison and classification of neural activity patterns. Based on two-dimensional representations of the geometric structure and temporal evolution of activity patterns, our method successfully classified a number of computer-generated sample patterns created from combinations of various spatial and temporal patterns. In addition, we validated our method with voltage-sensitive dye imaging data of Alzheimer's disease (AD) model mice. Our analysis algorithm successfully distinguished the activity data of AD mice from that of wild type with significantly higher performance than previously suggested methods. Our result provides a pragmatic solution for precise analysis of spatiotemporal patterns of neural imaging data.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Voltage-Sensitive Dye Imaging / Neuroimaging Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sci Rep Year: 2018 Document type: Article Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Voltage-Sensitive Dye Imaging / Neuroimaging Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sci Rep Year: 2018 Document type: Article Country of publication: United kingdom