Your browser doesn't support javascript.
loading
Cell membrane electroporation modeling: A multiphysics approach.
Goldberg, Ezequiel; Suárez, Cecilia; Alfonso, Mauricio; Marchese, Juan; Soba, Alejandro; Marshall, Guillermo.
Affiliation
  • Goldberg E; Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
  • Suárez C; Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Alfonso M; Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Marchese J; Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Soba A; Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
  • Marshall G; Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Física del Plasma, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Facultad de Ciencias Exa
Bioelectrochemistry ; 124: 28-39, 2018 Dec.
Article in En | MEDLINE | ID: mdl-29990599
Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Membrane / Electroporation Type of study: Prognostic_studies Limits: Animals Language: En Journal: Bioelectrochemistry Journal subject: BIOQUIMICA Year: 2018 Document type: Article Affiliation country: Argentina Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Membrane / Electroporation Type of study: Prognostic_studies Limits: Animals Language: En Journal: Bioelectrochemistry Journal subject: BIOQUIMICA Year: 2018 Document type: Article Affiliation country: Argentina Country of publication: Netherlands