Your browser doesn't support javascript.
loading
Facile Synthesis of Antimony Tungstate Nanosheets as Anodes for Lithium-Ion Batteries.
Liu, Yong; Wang, Yue; Wang, Fei; Lei, Zhenxiao; Zhang, Wanhong; Pan, Kunming; Liu, Jing; Chen, Min; Wang, Guangxin; Ren, Fengzhang; Wei, Shizhong.
Affiliation
  • Liu Y; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Wang Y; National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471023, China.
  • Wang F; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Lei Z; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Zhang W; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Pan K; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Liu J; National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471023, China.
  • Chen M; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
  • Wang G; School of Agriculture, Henan University of Science and Technology, Luoyang 471023, China.
  • Ren F; School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
  • Wei S; Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
Nanomaterials (Basel) ; 9(12)2019 Nov 25.
Article in En | MEDLINE | ID: mdl-31775358
Lithium-ion batteries (LIBs) have been widely used in the fields of smart phones, electric vehicles, and smart grids. With its opened Aurivillius structure, tungstate antimony oxide (Sb2WO6, SWO), constituted of {Sb2O2}2n+ and {WO4}2n-, is rarely investigated as an anode for lithium-ion batteries. In this work, Sb2WO6 with nanosheets morphology was successfully synthesized using a simple microwave hydrothermal method and systematically studied as an anode for lithium-ion batteries. The optimal SWO (SWO-60) exhibits a high specific discharge capacity and good rate capability. The good electrochemical performance could be ascribed to mesoporous nanosheets morphology, which is favorable for the penetration of the electrolyte and charge transportation. The results show that this nanostructured SWO is a promising anode material for LIBs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Document type: Article Affiliation country: China Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2019 Document type: Article Affiliation country: China Country of publication: Switzerland