Synthesis of Lactulose in Continuous Stirred Tank Reactor With ß-Galactosidase of Apergillus oryzae Immobilized in Monofunctional Glyoxyl Agarose Support.
Front Bioeng Biotechnol
; 8: 699, 2020.
Article
in En
| MEDLINE
| ID: mdl-32695768
Lactulose synthesis from fructose and lactose in continuous stirred tank (CSTR) reactor operation with glyoxyl-agarose immobilized Aspergillus oryzae ß-galactosidase is reported for the first time. The effect of operational variables: inlet concentrations of sugar substrates, temperature, feed substrate molar ratio, enzyme loading and feed flow rate was studied on reactor performance. Even though the variation of each one affected to a certain extent lactulose yield (Y Lactulose ), specific productivity (π Lactulose ) and selectivity of the reaction (lactulose/transgalactosylated oligosaccharides molar ratio) (S Lu/TOS ), the most significant effects were obtained by varying the inlet concentrations of sugar substrates and the feed substrate molar ratio. Maximum Y Lactulose of 0.54 gâ
g-1 was obtained at 50°C, pH 4.5, 50% w/w inlet concentrations of sugar substrates, feed flowrate of 12 mLâ
min-1, fructose/lactose molar ratio of 8 and reactor enzyme load of 29.06 IU H â
mL-1. At such conditions S Lu/TOS was 3.7, lactose conversion (X Lactose ) was 0.39 and total transgalactosylation yield was 0.762 gâ
g-1, meaning that 76% of the reacted lactose corresponded to transgalactosylation and 24% to hydrolysis, which is a definite advantage of this mode of operation. Even though X Lactose in CSTR was lower than in other reported modes of operation for lactulose synthesis, transgalactosylation was more favored over hydrolysis which reduced the inhibitory effect of galactose on ß-galactosidase.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Front Bioeng Biotechnol
Year:
2020
Document type:
Article
Affiliation country:
Chile
Country of publication:
Switzerland