Your browser doesn't support javascript.
loading
Antimicrobial action of 1,10-phenanthroline-based compounds on carbapenemase-producing Acinetobacter baumannii clinical strains: efficacy against planktonic- and biofilm-growing cells.
Ventura, Roberta F; Galdino, Anna Clara M; Viganor, Livia; Schuenck, Ricardo P; Devereux, Michael; McCann, Malachy; Santos, André L S; Nunes, Ana Paula F.
Affiliation
  • Ventura RF; Department of Pathology, Federal University of Espírito Santo, Espírito Santo, Brazil.
  • Galdino ACM; Infection Diseases Post-Graduation Program, Federal University of Espírito Santo, Espírito Santo, Brazil.
  • Viganor L; Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  • Schuenck RP; Biochemistry Post-Graduation Program, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  • Devereux M; Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  • McCann M; Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, City Campus, Dublin, Ireland.
  • Santos ALS; Department of Pathology, Federal University of Espírito Santo, Espírito Santo, Brazil.
  • Nunes APF; Infection Diseases Post-Graduation Program, Federal University of Espírito Santo, Espírito Santo, Brazil.
Braz J Microbiol ; 51(4): 1703-1710, 2020 Dec.
Article in En | MEDLINE | ID: mdl-32737867
Therapeutic options are limited for patients infected with Acinetobacter baumannii due to its multidrug-resistance profile. So, the search for new antimicrobials against this gram-negative bacterial pathogen has become a worldwide priority. The present study aimed to evaluate the effects of 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) on 26 carbapenemase-producing A. baumannii strains. The susceptibility to carbapenems was performed by detecting the metallo-beta-lactamase (MBL) genes by PCR and by determining the MIC. Also, disk diffusion method was applied to evaluate the susceptibility to other antimicrobial classes. The test compounds were evaluated on both planktonic- and biofilm-growing bacterial cells. The results revealed that all A. baumannii strains had the intrinsic blaoxa-51 gene, and at least one of the blaoxa-23 or blaoxa-24 genes. The geometric mean MIC and minimum bactericidal concentration (MBC) values, respectively, were as follows: Cu-phendione (1.56 and 2.30 µM), Ag-phendione (2.48 and 3.63 µM), phendione (9.44 and 9.70 µM), and phen (70.46 and 184.28 µM). The test compounds (at 0.5 × MIC) affected the biofilm formation and disrupted the mature biofilm, in a typically dose-dependent manner, reducing biomass and viability parameters. Collectively, silver and copper-phendione derivatives presented potent antimicrobial action against planktonic- and biofilm-forming cells of carbapenemase-producing A. baumannii.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phenanthrolines / Bacterial Proteins / Beta-Lactamases / Biofilms / Acinetobacter baumannii / Anti-Bacterial Agents Limits: Humans Language: En Journal: Braz J Microbiol Year: 2020 Document type: Article Affiliation country: Brazil Country of publication: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phenanthrolines / Bacterial Proteins / Beta-Lactamases / Biofilms / Acinetobacter baumannii / Anti-Bacterial Agents Limits: Humans Language: En Journal: Braz J Microbiol Year: 2020 Document type: Article Affiliation country: Brazil Country of publication: Brazil