Simultaneous removal of nitrate and heavy metals in a continuous flow nitrate-dependent ferrous iron oxidation (NDFO) bioreactor.
Chemosphere
; 262: 127838, 2021 Jan.
Article
in En
| MEDLINE
| ID: mdl-32768756
Nitrogen and heavy metals can co-occur in various industrial wastewaters such as coke-oven wastewater. Removal of these contaminants is important, but cost-efficient removal technology is limited. In this study, we examined the usefulness of nitrate-dependent ferrous iron oxidation (NDFO) for the simultaneous removal of nitrate and heavy metals (iron and zinc), by using an NDFO strain Pseudogulbenkiania sp. NH8B. Based on the batch culture assays, nitrate, Fe, and Zn were successfully removed from a basal medium as well as coke-oven wastewater containing 5 mM nitrate, 10 mM Fe(II), and 10 mg/L Zn. Zinc in the water was most likely co-precipitated with Fe(III) oxides produced during the NDFO reaction. Simultaneous removal of nitrate, Fe, and Zn was also achieved in a continuous-flow reactor fed with a basal medium containing 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L Zn. However, when the reactor is fed with coke-oven wastewater supplemented with 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L ZnCl2, the reactor performance significantly decreased, most likely due to the inhibition of bacterial growth by thiocyanate or organic contaminants present in the coke-oven wastewater. Use of mixed culture of NDFO bacteria and thiocyanate/organic-degrading denitrifiers should help improve the reactor performance.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Waste Disposal, Fluid
/
Metals, Heavy
/
Bioreactors
/
Nitrates
Language:
En
Journal:
Chemosphere
Year:
2021
Document type:
Article
Affiliation country:
Japan
Country of publication:
United kingdom